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How Do You Deal With NP-Hardness?

Possible Answers
• Greedy algorithms.

• (Polynomial-time) approximation algorithms.
• Parameterized algorithms.
• Exponential-time approximation algorithms.

Our Goal

Exact algorithms → Exp-time approx.
Out of the box.
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Our Motivation

Database Systems
Not so known in TCS: Database join ordering.

• Exact algorithms known since 1970s.
• Present in any database system you’ve heard of.
• Hard to approximate [1].
• Hence, a long suite of greedy algorithms [2, 3, 4, 5].
• No exp-time approximation algorithm.

Even beyond database systems:
Tensor contraction ordering — used in quantum circuit simulation.
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SELECT count(*)
FROM customer c
JOIN orders o ON c.c custkey = o.o custkey
JOIN lineitem l ON o.o orderkey = l.l orderkey
JOIN supplier s ON l.l suppkey = s.s suppkey

Even beyond database systems:
Tensor contraction ordering — used in quantum circuit simulation.
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Min-Sum Subset Convolution: Intro

The solution? The following “innocent” looking expression:

Definition
Given two set functions f, g, their min-sum subset convolution is:

(f ∗ g)(S) = min
T ⊆S

(f(T ) + g(S \ T )) ,

for all S ⊆ [n].
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Min-Sum Subset Convolution: Intro

(f ∗ g)(S) = min
T ⊆S

(f(T ) + g(S \ T ))

f

111 : 1

110 : 4

101 : 5

100 : 3

011 : 3

010 : 7

001 : 6

000 : 1

˚

g

3

8

5

1

0

2

0

4

f ˚ g

“

3

5

3

2

1

3

1

5

4



Min-Sum Subset Convolution: Intro

Ubiquity
• Minimum Steiner Tree [6], Prize-Collecting Steiner Tree [7],
• Min-Cost k-Coloring [8],
• Computational Biology [9],
• and many others [10, 11].
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Min-Sum Subset Convolution: Hands-On

Let’s see what it (roughly) looks like for minimum Steiner tree:

DP[X, v] = min
X′⊆X, u∈V \T

DP[X ′, v] + DP[X \ X ′, u] + w(uv).

How expensive is it to compute?
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Min-Sum Subset Convolution: Computation

Definition
Given two set functions f, g, their min-sum subset convolution is:

(f ∗ g)(S) = min
T ⊆S

(f(T ) + g(S \ T )) ,

for all S ⊆ [n].

Runtime
Two flavors so far:

• Näıve: O(
∑

k

(n
k

)
2k) = O((1 + 2)n) = O(3n) [ad-hoc]

• Via embedding: Õ(2nM), where M is the max in f, g [12].
▶ Known as the bounded-input algorithm.

The applications inherit these runtimes.∗

∗Unless specialized algorithms exist, e.g., minimum Steiner tree [13].
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• Näıve: O(
∑

k

(n
k

)
2k) = O((1 + 2)n) = O(3n) [ad-hoc]
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How To Enable Approximation

Out-of-the-box (1 + ε)-Approximation.
Replace min-sum subset convolution with (1 + ε)-approximation.

Would solve database join ordering faster.
Would target the NP-hard combinatorial problems from before.

But wait..

No (1 + ε)-aproximate min-sum subset convolution so far.
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Approximate Min-Sum Subset Convolution

Definition
Given two set functions f, g, approximate their min-sum subset
convolution:

(f ∗ g)(S) ≤ h̃(S) ≤ (1 + ε)(f ∗ g)(S)

for all S ⊆ [n], with ε > 0.

Technical Results
Theorem
We can have an (1 + ε)-approximation in time Õ(2n log M/ε).∗

Theorem
We can have an (1 + ε)-approximation in time Õ(2

3n
2 /

√
ε).

∗Õ(·) hides nO(1) factors.
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More Results

Remember, this is now a generic tool. Some examples:

Theorem
We can find an (1 + ε)-approximation for prize-collecting Steiner
tree in time Õ(2s+ log M/ε).∗

Theorem
We can find an (1 + ε)-approximation for prize-collecting Steiner
tree in time Õ(2

3s+
2 /

√
ε).

Theorem
We can find an (1 + ε)-approximation for min-cost k-coloring in
time Õ(2

3n
2 /

√
ε).

∗s+ = #proper potential terminals.

10



More Results

Remember, this is now a generic tool. Some examples:

Theorem
We can find an (1 + ε)-approximation for prize-collecting Steiner
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tree in time Õ(2s+ log M/ε).∗

Theorem
We can find an (1 + ε)-approximation for prize-collecting Steiner
tree in time Õ(2
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Subset Convs in Tropical Semi-Rings

Since the work of Björklund et al. [12], no other algorithms for
tropical semi-rings. We revive this line of research after ≈20 years:

Reference Type (Semi-)Ring Running Time

ad-hoc exact any O(3n)
Björklund et al. exact (+, ×) O(2nn2)
Björklund et al. exact (min, +) Õ(2nM)

this work exact (min, max) Õ(2
3n
2 )

this work (1 + ε)-apx (min, +) Õ(2n log M/ε)
this work (1 + ε)-apx (min, +) Õ(2

3n
2 /

√
ε)

Table: Reviving research on tropical subset convolutions.
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this work exact (min, max) Õ(2
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Technical Overview
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Sequence Convs ▷◁ Subset Convs
Sequence convs and subset convs have been considered separately.
We initiate their study as a common object.

Min-Plus Sequence Convolution
Given two sequences (ai)i∈[n], (bi)i∈[n], their min-plus sequence
conv is:

(a ∗ b)k = min
i+j=k

(ai + bj) ,

for all k ∈ [n].

Sequence Convs: Rich Literature
• (min, +)-conv widely used as hardness [14, 15].
• (Many) approximation algorithms [16, 17, 18].

▶ Main application: Tree sparsity [16].
• However, no connection to min-sum subset conv so far.
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Weakly-Polynomial Approximation Algorithm
Let us start with the weakly-poly approx algorithm (easy).∗

Key & Standard Idea: Scaling
1. Consider powers of two in decreasing order:

2⌈log 2M⌉, . . . , 4, 2, 1.
2. Scale the values → input becomes bounded.
3. Run the bounded-input algorithm.

This only works because:
• Min-plus sequence conv runs in time Õ(nM) via FFT [19].†

• Min-sum subset conv runs in time Õ(2nM) [12].

Theorem
We can have (1 + ε)-approximation in time Õ(2n log M/ε).

∗Note: Input size is O(2n).

†This hides polylog(nM) factors.
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∗Note: Input size is O(2n).

†This hides polylog(nM) factors.

14



Weakly-Polynomial Approximation Algorithm
Let us start with the weakly-poly approx algorithm (easy).∗

Key & Standard Idea: Scaling
1. Consider powers of two in decreasing order:

2⌈log 2M⌉, . . . , 4, 2, 1.

2. Scale the values → input becomes bounded.
3. Run the bounded-input algorithm.

This only works because:
• Min-plus sequence conv runs in time Õ(nM) via FFT [19].†

• Min-sum subset conv runs in time Õ(2nM) [12].
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Theorem
We can have (1 + ε)-approximation in time Õ(2n log M/ε).
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Theorem
We can have (1 + ε)-approximation in time Õ(2n log M/ε).
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Strongly-Polynomial Approximation Algorithm

Can we remove the depedency on M?

Overview
• We can use [BKW, STOC’19]’s framework for

strongly-polynomial approx min-plus sequence conv.
• Initially, only developed for sequence convolutions. They

asked for more applications.
→ We would need a min-max subset convolution for this.
Not present in literature before.
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A Detour: Min-Max Subset Convolution

Definition
Given two set functions f, g, their min-max subset convolution is:

(f ⃝∨ g)(S) = min
T ⊆S

max{f(T ), g(S \ T )},

for all S ⊆ [n].

Theorem
Min-max subset convolution can be solved in time Õ(2

3n
2 ).

Let’s see how.
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A Detour: Min-Max Subset Convolution

We adapt Kosaraju’s algorithm for min-max sequence conv [20]:

Overview
1. Collect values of f, g into a common list L.
2. Sort L.
3. Divide L in chunks of size O(

√
2n).

4. Use fast boolean subset convolution on
[f ≤ max C], [g ≤ max C], where C = the current chunk.

5. Näıvely solve for the sets that got activated at the current
chunk.

17
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Strongly-Polynomial Approximation Algorithm

Back to our initial goal: Strongly-polynomial approx.

BKW’s Framework Meets Subset Convolutions
• Applying BKW’s framework [18] would only yield Õ(2

3n
2 /ε).

• However, this can be improved.
• We adapt their refined analysis to the subset setting.
• Final runtime: Õ(2

3n
2 /

√
ε).
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How To Enable Approximation: Example
Min-Cost k-Coloring
Let c : V (G) × [k] → {−M, . . . , M} be the cost function.

Mimimize:
∑

v∈V (G)
c(v, χ(v)).

Define:

si(X) =


∑
x∈X

c(x, i), if X is an independent set,

+∞, otherwise.

Optimal cost: (s1 ⋆ . . . ⋆ sk)(X), for X ∈ 2V (G).

Approach
• Fix a relative error δ > 0.
• Hence, the total error is (1 + δ)k−1.
• Set δ := Θ(ε/(k − 1)).
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Discussion

Summary
• Out-of-the-box exp-time (1 + ε)-approximations.

• Swiss-army knife: (1 + ε)-approximate min-sum subset conv.
• Refreshed subset convs in tropical semi-rings after ≈20 years.

(Major) Open Problems
• Polynomial speedups for min-sum subset convolution.

→ (min, +) sequence convolution has a rich literature.
• Conjecture similar to that in the sequence setting [14, 15]:

Conjecture
There is no O((3 − δ)npolylog(M))-time exact algorithm for
min-sum subset convolution, with δ > 0.
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