
Approximate Min-Sum Subset Convolution

Mihail Stoian

Data Systems Lab

September 6th, 2024



How Do You Deal With NP-Hardness?

Possible Answers
• Greedy algorithms.

• (Polynomial-time) approximation algorithms.
• Parameterized algorithms.
• Exponential-time approximation algorithms.

Our Goal

Exact algorithms → Exp-time approx.
Out of the box.

1



How Do You Deal With NP-Hardness?

Possible Answers
• Greedy algorithms.
• (Polynomial-time) approximation algorithms.

• Parameterized algorithms.
• Exponential-time approximation algorithms.

Our Goal

Exact algorithms → Exp-time approx.
Out of the box.

1



How Do You Deal With NP-Hardness?

Possible Answers
• Greedy algorithms.
• (Polynomial-time) approximation algorithms.
• Parameterized algorithms.

• Exponential-time approximation algorithms.

Our Goal

Exact algorithms → Exp-time approx.
Out of the box.

1



How Do You Deal With NP-Hardness?

Possible Answers
• Greedy algorithms.
• (Polynomial-time) approximation algorithms.
• Parameterized algorithms.
• Exponential-time approximation algorithms.

Our Goal

Exact algorithms → Exp-time approx.
Out of the box.

1



How Do You Deal With NP-Hardness?

Possible Answers
• Greedy algorithms.
• (Polynomial-time) approximation algorithms.
• Parameterized algorithms.
• Exponential-time approximation algorithms.

Our Goal

Exact algorithms → Exp-time approx.
Out of the box.

1



Our Motivation

Database Systems
Not so known in TCS: Database join ordering.

• Exact algorithms known since 1970s.
• Present in any database system you’ve heard of.
• Hard to approximate [1].
• Hence, a long suite of greedy algorithms [2, 3, 4, 5].
• No exp-time approximation algorithm.

Even beyond database systems:
Tensor contraction ordering — used in quantum circuit simulation.

2



Our Motivation

Database Systems
Not so known in TCS: Database join ordering.

SELECT count(*)
FROM customer c
JOIN orders o ON c.c custkey = o.o custkey
JOIN lineitem l ON o.o orderkey = l.l orderkey
JOIN supplier s ON l.l suppkey = s.s suppkey

Even beyond database systems:
Tensor contraction ordering — used in quantum circuit simulation.

2



Our Motivation

Database Systems
Not so known in TCS: Database join ordering.

• Exact algorithms known since 1970s.
• Present in any database system you’ve heard of.

• Hard to approximate [1].
• Hence, a long suite of greedy algorithms [2, 3, 4, 5].
• No exp-time approximation algorithm.

Even beyond database systems:
Tensor contraction ordering — used in quantum circuit simulation.

2



Our Motivation

Database Systems
Not so known in TCS: Database join ordering.

• Exact algorithms known since 1970s.
• Present in any database system you’ve heard of.
• Hard to approximate [1].

• Hence, a long suite of greedy algorithms [2, 3, 4, 5].
• No exp-time approximation algorithm.

Even beyond database systems:
Tensor contraction ordering — used in quantum circuit simulation.

2



Our Motivation

Database Systems
Not so known in TCS: Database join ordering.

• Exact algorithms known since 1970s.
• Present in any database system you’ve heard of.
• Hard to approximate [1].
• Hence, a long suite of greedy algorithms [2, 3, 4, 5].

• No exp-time approximation algorithm.

Even beyond database systems:
Tensor contraction ordering — used in quantum circuit simulation.

2



Our Motivation

Database Systems
Not so known in TCS: Database join ordering.

• Exact algorithms known since 1970s.
• Present in any database system you’ve heard of.
• Hard to approximate [1].
• Hence, a long suite of greedy algorithms [2, 3, 4, 5].
• No exp-time approximation algorithm.

Even beyond database systems:
Tensor contraction ordering — used in quantum circuit simulation.

2



Our Motivation

Database Systems
Not so known in TCS: Database join ordering.

• Exact algorithms known since 1970s.
• Present in any database system you’ve heard of.
• Hard to approximate [1].
• Hence, a long suite of greedy algorithms [2, 3, 4, 5].
• No exp-time approximation algorithm.

Even beyond database systems:
Tensor contraction ordering — used in quantum circuit simulation.

2



Min-Sum Subset Convolution: Intro

The solution? The following “innocent” looking expression:

Definition
Given two set functions f, g, their min-sum subset convolution is:

(f ∗ g)(S) = min
T ⊆S

(f(T ) + g(S \ T )) ,

for all S ⊆ [n].

3



Min-Sum Subset Convolution: Intro

The solution? The following “innocent” looking expression:

Definition
Given two set functions f, g, their min-sum subset convolution is:

(f ∗ g)(S) = min
T ⊆S

(f(T ) + g(S \ T )) ,

for all S ⊆ [n].

3



Min-Sum Subset Convolution: Intro

(f ∗ g)(S) = min
T ⊆S

(f(T ) + g(S \ T ))

f

111 : 1

110 : 4

101 : 5

100 : 3

011 : 3

010 : 7

001 : 6

000 : 1

˚

g

3

8

5

1

0

2

0

4

f ˚ g

“

3

5

3

2

1

3

1

5

4



Min-Sum Subset Convolution: Intro

Ubiquity
• Minimum Steiner Tree [6], Prize-Collecting Steiner Tree [7],
• Min-Cost k-Coloring [8],
• Computational Biology [9],
• and many others [10, 11].

5



Min-Sum Subset Convolution: Hands-On

Let’s see what it (roughly) looks like for minimum Steiner tree:

DP[X, v] = min
X′⊆X, u∈V \T

DP[X ′, v] + DP[X \ X ′, u] + w(uv).

How expensive is it to compute?

6



Min-Sum Subset Convolution: Hands-On

Let’s see what it (roughly) looks like for minimum Steiner tree:

DP[X, v] = min
X′⊆X, u∈V \T

DP[X ′, v] + DP[X \ X ′, u] + w(uv).

How expensive is it to compute?

6



Min-Sum Subset Convolution: Hands-On

Let’s see what it (roughly) looks like for minimum Steiner tree:

DP[X, v] = min
X′⊆X, u∈V \T

DP[X ′, v] + DP[X \ X ′, u] + w(uv).

How expensive is it to compute?

6



Min-Sum Subset Convolution: Hands-On

Let’s see what it (roughly) looks like for minimum Steiner tree:

DP[X, v] = min
X′⊆X, u∈V \T

DP[X ′, v] + DP[X \ X ′, u] + w(uv).

How expensive is it to compute?

6



Min-Sum Subset Convolution: Computation

Definition
Given two set functions f, g, their min-sum subset convolution is:

(f ∗ g)(S) = min
T ⊆S

(f(T ) + g(S \ T )) ,

for all S ⊆ [n].

Runtime
Two flavors so far:

• Näıve: O(
∑

k

(n
k

)
2k) = O((1 + 2)n) = O(3n) [ad-hoc]

• Via embedding: Õ(2nM), where M is the max in f, g [12].
▶ Known as the bounded-input algorithm.

The applications inherit these runtimes.∗

∗Unless specialized algorithms exist, e.g., minimum Steiner tree [13].

7



Min-Sum Subset Convolution: Computation

Definition
Given two set functions f, g, their min-sum subset convolution is:

(f ∗ g)(S) = min
T ⊆S

(f(T ) + g(S \ T )) ,

for all S ⊆ [n].

Runtime
Two flavors so far:

• Näıve: O(
∑

k

(n
k

)
2k) = O((1 + 2)n) = O(3n) [ad-hoc]

• Via embedding: Õ(2nM), where M is the max in f, g [12].
▶ Known as the bounded-input algorithm.

The applications inherit these runtimes.∗

∗Unless specialized algorithms exist, e.g., minimum Steiner tree [13].

7



Min-Sum Subset Convolution: Computation

Definition
Given two set functions f, g, their min-sum subset convolution is:

(f ∗ g)(S) = min
T ⊆S

(f(T ) + g(S \ T )) ,

for all S ⊆ [n].

Runtime
Two flavors so far:

• Näıve: O(
∑

k

(n
k

)
2k) = O((1 + 2)n) = O(3n) [ad-hoc]

• Via embedding: Õ(2nM), where M is the max in f, g [12].

▶ Known as the bounded-input algorithm.

The applications inherit these runtimes.∗

∗Unless specialized algorithms exist, e.g., minimum Steiner tree [13].

7



Min-Sum Subset Convolution: Computation

Definition
Given two set functions f, g, their min-sum subset convolution is:

(f ∗ g)(S) = min
T ⊆S

(f(T ) + g(S \ T )) ,

for all S ⊆ [n].

Runtime
Two flavors so far:

• Näıve: O(
∑

k

(n
k

)
2k) = O((1 + 2)n) = O(3n) [ad-hoc]

• Via embedding: Õ(2nM), where M is the max in f, g [12].
▶ Known as the bounded-input algorithm.

The applications inherit these runtimes.∗

∗Unless specialized algorithms exist, e.g., minimum Steiner tree [13].

7



Min-Sum Subset Convolution: Computation

Definition
Given two set functions f, g, their min-sum subset convolution is:

(f ∗ g)(S) = min
T ⊆S

(f(T ) + g(S \ T )) ,

for all S ⊆ [n].

Runtime
Two flavors so far:

• Näıve: O(
∑

k

(n
k

)
2k) = O((1 + 2)n) = O(3n) [ad-hoc]

• Via embedding: Õ(2nM), where M is the max in f, g [12].
▶ Known as the bounded-input algorithm.

The applications inherit these runtimes.∗

∗Unless specialized algorithms exist, e.g., minimum Steiner tree [13].
7



How To Enable Approximation

Out-of-the-box (1 + ε)-Approximation.
Replace min-sum subset convolution with (1 + ε)-approximation.

Would solve database join ordering faster.
Would target the NP-hard combinatorial problems from before.

But wait..

No (1 + ε)-aproximate min-sum subset convolution so far.

8



How To Enable Approximation

Out-of-the-box (1 + ε)-Approximation.
Replace min-sum subset convolution with (1 + ε)-approximation.

Would solve database join ordering faster.
Would target the NP-hard combinatorial problems from before.

But wait..

No (1 + ε)-aproximate min-sum subset convolution so far.

8



How To Enable Approximation

Out-of-the-box (1 + ε)-Approximation.
Replace min-sum subset convolution with (1 + ε)-approximation.

Would solve database join ordering faster.
Would target the NP-hard combinatorial problems from before.

But wait..

No (1 + ε)-aproximate min-sum subset convolution so far.

8



Approximate Min-Sum Subset Convolution

Definition
Given two set functions f, g, approximate their min-sum subset
convolution:

(f ∗ g)(S) ≤ h̃(S) ≤ (1 + ε)(f ∗ g)(S)

for all S ⊆ [n], with ε > 0.

Technical Results
Theorem
We can have an (1 + ε)-approximation in time Õ(2n log M/ε).∗

Theorem
We can have an (1 + ε)-approximation in time Õ(2

3n
2 /

√
ε).

∗Õ(·) hides nO(1) factors.

9



Approximate Min-Sum Subset Convolution

Definition
Given two set functions f, g, approximate their min-sum subset
convolution:

(f ∗ g)(S) ≤ h̃(S) ≤ (1 + ε)(f ∗ g)(S)

for all S ⊆ [n], with ε > 0.

Technical Results

Theorem
We can have an (1 + ε)-approximation in time Õ(2n log M/ε).∗

Theorem
We can have an (1 + ε)-approximation in time Õ(2

3n
2 /

√
ε).

∗Õ(·) hides nO(1) factors.

9



Approximate Min-Sum Subset Convolution

Definition
Given two set functions f, g, approximate their min-sum subset
convolution:

(f ∗ g)(S) ≤ h̃(S) ≤ (1 + ε)(f ∗ g)(S)

for all S ⊆ [n], with ε > 0.

Technical Results
Theorem
We can have an (1 + ε)-approximation in time Õ(2n log M/ε).∗

Theorem
We can have an (1 + ε)-approximation in time Õ(2

3n
2 /

√
ε).

∗Õ(·) hides nO(1) factors.
9



Approximate Min-Sum Subset Convolution

Definition
Given two set functions f, g, approximate their min-sum subset
convolution:

(f ∗ g)(S) ≤ h̃(S) ≤ (1 + ε)(f ∗ g)(S)

for all S ⊆ [n], with ε > 0.

Technical Results
Theorem
We can have an (1 + ε)-approximation in time Õ(2n log M/ε).∗

Theorem
We can have an (1 + ε)-approximation in time Õ(2

3n
2 /

√
ε).

∗Õ(·) hides nO(1) factors.
9



More Results

Remember, this is now a generic tool. Some examples:

Theorem
We can find an (1 + ε)-approximation for prize-collecting Steiner
tree in time Õ(2s+ log M/ε).∗

Theorem
We can find an (1 + ε)-approximation for prize-collecting Steiner
tree in time Õ(2

3s+
2 /

√
ε).

Theorem
We can find an (1 + ε)-approximation for min-cost k-coloring in
time Õ(2

3n
2 /

√
ε).

∗s+ = #proper potential terminals.

10



More Results

Remember, this is now a generic tool. Some examples:

Theorem
We can find an (1 + ε)-approximation for prize-collecting Steiner
tree in time Õ(2s+ log M/ε).∗

Theorem
We can find an (1 + ε)-approximation for prize-collecting Steiner
tree in time Õ(2

3s+
2 /

√
ε).

Theorem
We can find an (1 + ε)-approximation for min-cost k-coloring in
time Õ(2

3n
2 /

√
ε).

∗s+ = #proper potential terminals.
10



More Results

Remember, this is now a generic tool. Some examples:

Theorem
We can find an (1 + ε)-approximation for prize-collecting Steiner
tree in time Õ(2s+ log M/ε).∗

Theorem
We can find an (1 + ε)-approximation for prize-collecting Steiner
tree in time Õ(2

3s+
2 /

√
ε).

Theorem
We can find an (1 + ε)-approximation for min-cost k-coloring in
time Õ(2

3n
2 /

√
ε).

∗s+ = #proper potential terminals.
10



More Results

Remember, this is now a generic tool. Some examples:

Theorem
We can find an (1 + ε)-approximation for prize-collecting Steiner
tree in time Õ(2s+ log M/ε).∗

Theorem
We can find an (1 + ε)-approximation for prize-collecting Steiner
tree in time Õ(2

3s+
2 /

√
ε).

Theorem
We can find an (1 + ε)-approximation for min-cost k-coloring in
time Õ(2

3n
2 /

√
ε).

∗s+ = #proper potential terminals.
10



Subset Convs in Tropical Semi-Rings

Since the work of Björklund et al. [12], no other algorithms for
tropical semi-rings. We revive this line of research after ≈20 years:

Reference Type (Semi-)Ring Running Time

ad-hoc exact any O(3n)
Björklund et al. exact (+, ×) O(2nn2)
Björklund et al. exact (min, +) Õ(2nM)

this work exact (min, max) Õ(2
3n
2 )

this work (1 + ε)-apx (min, +) Õ(2n log M/ε)
this work (1 + ε)-apx (min, +) Õ(2

3n
2 /

√
ε)

Table: Reviving research on tropical subset convolutions.

11



Subset Convs in Tropical Semi-Rings

Since the work of Björklund et al. [12], no other algorithms for
tropical semi-rings. We revive this line of research after ≈20 years:

Reference Type (Semi-)Ring Running Time

ad-hoc exact any O(3n)
Björklund et al. exact (+, ×) O(2nn2)
Björklund et al. exact (min, +) Õ(2nM)

this work exact (min, max) Õ(2
3n
2 )

this work (1 + ε)-apx (min, +) Õ(2n log M/ε)
this work (1 + ε)-apx (min, +) Õ(2

3n
2 /

√
ε)

Table: Reviving research on tropical subset convolutions.

11



Subset Convs in Tropical Semi-Rings

Since the work of Björklund et al. [12], no other algorithms for
tropical semi-rings. We revive this line of research after ≈20 years:

Reference Type (Semi-)Ring Running Time

ad-hoc exact any O(3n)
Björklund et al. exact (+, ×) O(2nn2)
Björklund et al. exact (min, +) Õ(2nM)

this work exact (min, max) Õ(2
3n
2 )

this work (1 + ε)-apx (min, +) Õ(2n log M/ε)
this work (1 + ε)-apx (min, +) Õ(2

3n
2 /

√
ε)

Table: Reviving research on tropical subset convolutions.

11



Technical Overview

12



Sequence Convs ▷◁ Subset Convs
Sequence convs and subset convs have been considered separately.
We initiate their study as a common object.

Min-Plus Sequence Convolution
Given two sequences (ai)i∈[n], (bi)i∈[n], their min-plus sequence
conv is:

(a ∗ b)k = min
i+j=k

(ai + bj) ,

for all k ∈ [n].

Sequence Convs: Rich Literature
• (min, +)-conv widely used as hardness [14, 15].
• (Many) approximation algorithms [16, 17, 18].

▶ Main application: Tree sparsity [16].
• However, no connection to min-sum subset conv so far.

13



Sequence Convs ▷◁ Subset Convs
Sequence convs and subset convs have been considered separately.
We initiate their study as a common object.

Min-Plus Sequence Convolution
Given two sequences (ai)i∈[n], (bi)i∈[n], their min-plus sequence
conv is:

(a ∗ b)k = min
i+j=k

(ai + bj) ,

for all k ∈ [n].

Sequence Convs: Rich Literature
• (min, +)-conv widely used as hardness [14, 15].
• (Many) approximation algorithms [16, 17, 18].

▶ Main application: Tree sparsity [16].
• However, no connection to min-sum subset conv so far.

13



Sequence Convs ▷◁ Subset Convs
Sequence convs and subset convs have been considered separately.
We initiate their study as a common object.

Min-Plus Sequence Convolution
Given two sequences (ai)i∈[n], (bi)i∈[n], their min-plus sequence
conv is:

(a ∗ b)k = min
i+j=k

(ai + bj) ,

for all k ∈ [n].

Sequence Convs: Rich Literature

• (min, +)-conv widely used as hardness [14, 15].
• (Many) approximation algorithms [16, 17, 18].

▶ Main application: Tree sparsity [16].
• However, no connection to min-sum subset conv so far.

13



Sequence Convs ▷◁ Subset Convs
Sequence convs and subset convs have been considered separately.
We initiate their study as a common object.

Min-Plus Sequence Convolution
Given two sequences (ai)i∈[n], (bi)i∈[n], their min-plus sequence
conv is:

(a ∗ b)k = min
i+j=k

(ai + bj) ,

for all k ∈ [n].

Sequence Convs: Rich Literature
• (min, +)-conv widely used as hardness [14, 15].

• (Many) approximation algorithms [16, 17, 18].
▶ Main application: Tree sparsity [16].

• However, no connection to min-sum subset conv so far.

13



Sequence Convs ▷◁ Subset Convs
Sequence convs and subset convs have been considered separately.
We initiate their study as a common object.

Min-Plus Sequence Convolution
Given two sequences (ai)i∈[n], (bi)i∈[n], their min-plus sequence
conv is:

(a ∗ b)k = min
i+j=k

(ai + bj) ,

for all k ∈ [n].

Sequence Convs: Rich Literature
• (min, +)-conv widely used as hardness [14, 15].
• (Many) approximation algorithms [16, 17, 18].

▶ Main application: Tree sparsity [16].

• However, no connection to min-sum subset conv so far.

13



Sequence Convs ▷◁ Subset Convs
Sequence convs and subset convs have been considered separately.
We initiate their study as a common object.

Min-Plus Sequence Convolution
Given two sequences (ai)i∈[n], (bi)i∈[n], their min-plus sequence
conv is:

(a ∗ b)k = min
i+j=k

(ai + bj) ,

for all k ∈ [n].

Sequence Convs: Rich Literature
• (min, +)-conv widely used as hardness [14, 15].
• (Many) approximation algorithms [16, 17, 18].

▶ Main application: Tree sparsity [16].
• However, no connection to min-sum subset conv so far.

13



Weakly-Polynomial Approximation Algorithm
Let us start with the weakly-poly approx algorithm (easy).∗

Key & Standard Idea: Scaling
1. Consider powers of two in decreasing order:

2⌈log 2M⌉, . . . , 4, 2, 1.
2. Scale the values → input becomes bounded.
3. Run the bounded-input algorithm.

This only works because:
• Min-plus sequence conv runs in time Õ(nM) via FFT [19].†

• Min-sum subset conv runs in time Õ(2nM) [12].

Theorem
We can have (1 + ε)-approximation in time Õ(2n log M/ε).

∗Note: Input size is O(2n).

†This hides polylog(nM) factors.

14



Weakly-Polynomial Approximation Algorithm
Let us start with the weakly-poly approx algorithm (easy).∗

Key & Standard Idea: Scaling

1. Consider powers of two in decreasing order:
2⌈log 2M⌉, . . . , 4, 2, 1.

2. Scale the values → input becomes bounded.
3. Run the bounded-input algorithm.

This only works because:
• Min-plus sequence conv runs in time Õ(nM) via FFT [19].†

• Min-sum subset conv runs in time Õ(2nM) [12].

Theorem
We can have (1 + ε)-approximation in time Õ(2n log M/ε).

∗Note: Input size is O(2n).

†This hides polylog(nM) factors.

14



Weakly-Polynomial Approximation Algorithm
Let us start with the weakly-poly approx algorithm (easy).∗

Key & Standard Idea: Scaling
1. Consider powers of two in decreasing order:

2⌈log 2M⌉, . . . , 4, 2, 1.

2. Scale the values → input becomes bounded.
3. Run the bounded-input algorithm.

This only works because:
• Min-plus sequence conv runs in time Õ(nM) via FFT [19].†

• Min-sum subset conv runs in time Õ(2nM) [12].

Theorem
We can have (1 + ε)-approximation in time Õ(2n log M/ε).

∗Note: Input size is O(2n).

†This hides polylog(nM) factors.

14



Weakly-Polynomial Approximation Algorithm
Let us start with the weakly-poly approx algorithm (easy).∗

Key & Standard Idea: Scaling
1. Consider powers of two in decreasing order:

2⌈log 2M⌉, . . . , 4, 2, 1.
2. Scale the values → input becomes bounded.

3. Run the bounded-input algorithm.

This only works because:
• Min-plus sequence conv runs in time Õ(nM) via FFT [19].†

• Min-sum subset conv runs in time Õ(2nM) [12].

Theorem
We can have (1 + ε)-approximation in time Õ(2n log M/ε).

∗Note: Input size is O(2n).

†This hides polylog(nM) factors.

14



Weakly-Polynomial Approximation Algorithm
Let us start with the weakly-poly approx algorithm (easy).∗

Key & Standard Idea: Scaling
1. Consider powers of two in decreasing order:

2⌈log 2M⌉, . . . , 4, 2, 1.
2. Scale the values → input becomes bounded.
3. Run the bounded-input algorithm.

This only works because:
• Min-plus sequence conv runs in time Õ(nM) via FFT [19].†

• Min-sum subset conv runs in time Õ(2nM) [12].

Theorem
We can have (1 + ε)-approximation in time Õ(2n log M/ε).

∗Note: Input size is O(2n).

†This hides polylog(nM) factors.

14



Weakly-Polynomial Approximation Algorithm
Let us start with the weakly-poly approx algorithm (easy).∗

Key & Standard Idea: Scaling
1. Consider powers of two in decreasing order:

2⌈log 2M⌉, . . . , 4, 2, 1.
2. Scale the values → input becomes bounded.
3. Run the bounded-input algorithm.

This only works because:
• Min-plus sequence conv runs in time Õ(nM) via FFT [19].†

• Min-sum subset conv runs in time Õ(2nM) [12].

Theorem
We can have (1 + ε)-approximation in time Õ(2n log M/ε).

∗Note: Input size is O(2n).
†This hides polylog(nM) factors.

14



Weakly-Polynomial Approximation Algorithm
Let us start with the weakly-poly approx algorithm (easy).∗

Key & Standard Idea: Scaling
1. Consider powers of two in decreasing order:

2⌈log 2M⌉, . . . , 4, 2, 1.
2. Scale the values → input becomes bounded.
3. Run the bounded-input algorithm.

This only works because:
• Min-plus sequence conv runs in time Õ(nM) via FFT [19].†

• Min-sum subset conv runs in time Õ(2nM) [12].

Theorem
We can have (1 + ε)-approximation in time Õ(2n log M/ε).

∗Note: Input size is O(2n).
†This hides polylog(nM) factors.

14



Weakly-Polynomial Approximation Algorithm
Let us start with the weakly-poly approx algorithm (easy).∗

Key & Standard Idea: Scaling
1. Consider powers of two in decreasing order:

2⌈log 2M⌉, . . . , 4, 2, 1.
2. Scale the values → input becomes bounded.
3. Run the bounded-input algorithm.

This only works because:
• Min-plus sequence conv runs in time Õ(nM) via FFT [19].†

• Min-sum subset conv runs in time Õ(2nM) [12].

Theorem
We can have (1 + ε)-approximation in time Õ(2n log M/ε).

∗Note: Input size is O(2n).
†This hides polylog(nM) factors.

14



Weakly-Polynomial Approximation Algorithm
Let us start with the weakly-poly approx algorithm (easy).∗

Key & Standard Idea: Scaling
1. Consider powers of two in decreasing order:

2⌈log 2M⌉, . . . , 4, 2, 1.
2. Scale the values → input becomes bounded.
3. Run the bounded-input algorithm.

This only works because:
• Min-plus sequence conv runs in time Õ(nM) via FFT [19].†

• Min-sum subset conv runs in time Õ(2nM) [12].

Theorem
We can have (1 + ε)-approximation in time Õ(2n log M /ε).

∗Note: Input size is O(2n).
†This hides polylog(nM) factors.

14



Strongly-Polynomial Approximation Algorithm

Can we remove the depedency on M?

Overview
• We can use [BKW, STOC’19]’s framework for

strongly-polynomial approx min-plus sequence conv.
• Initially, only developed for sequence convolutions. They

asked for more applications.
→ We would need a min-max subset convolution for this.
Not present in literature before.

15



Strongly-Polynomial Approximation Algorithm

Can we remove the depedency on M?

Overview
• We can use [BKW, STOC’19]’s framework for

strongly-polynomial approx min-plus sequence conv.
• Initially, only developed for sequence convolutions. They

asked for more applications.

→ We would need a min-max subset convolution for this.
Not present in literature before.

15



Strongly-Polynomial Approximation Algorithm

Can we remove the depedency on M?

Overview
• We can use [BKW, STOC’19]’s framework for

strongly-polynomial approx min-plus sequence conv.
• Initially, only developed for sequence convolutions. They

asked for more applications.
→ We would need a min-max subset convolution for this.
Not present in literature before.

15



A Detour: Min-Max Subset Convolution

Definition
Given two set functions f, g, their min-max subset convolution is:

(f ⃝∨ g)(S) = min
T ⊆S

max{f(T ), g(S \ T )},

for all S ⊆ [n].

Theorem
Min-max subset convolution can be solved in time Õ(2

3n
2 ).

Let’s see how.

16



A Detour: Min-Max Subset Convolution

Definition
Given two set functions f, g, their min-max subset convolution is:

(f ⃝∨ g)(S) = min
T ⊆S

max{f(T ), g(S \ T )},

for all S ⊆ [n].

Theorem
Min-max subset convolution can be solved in time Õ(2

3n
2 ).

Let’s see how.

16



A Detour: Min-Max Subset Convolution

Definition
Given two set functions f, g, their min-max subset convolution is:

(f ⃝∨ g)(S) = min
T ⊆S

max{f(T ), g(S \ T )},

for all S ⊆ [n].

Theorem
Min-max subset convolution can be solved in time Õ(2

3n
2 ).

Let’s see how.

16



A Detour: Min-Max Subset Convolution

We adapt Kosaraju’s algorithm for min-max sequence conv [20]:

Overview
1. Collect values of f, g into a common list L.
2. Sort L.
3. Divide L in chunks of size O(

√
2n).

4. Use fast boolean subset convolution on
[f ≤ max C], [g ≤ max C], where C = the current chunk.

5. Näıvely solve for the sets that got activated at the current
chunk.

17



A Detour: Min-Max Subset Convolution

We adapt Kosaraju’s algorithm for min-max sequence conv [20]:

Overview
1. Collect values of f, g into a common list L.

2. Sort L.
3. Divide L in chunks of size O(

√
2n).

4. Use fast boolean subset convolution on
[f ≤ max C], [g ≤ max C], where C = the current chunk.

5. Näıvely solve for the sets that got activated at the current
chunk.

17



A Detour: Min-Max Subset Convolution

We adapt Kosaraju’s algorithm for min-max sequence conv [20]:

Overview
1. Collect values of f, g into a common list L.
2. Sort L.

3. Divide L in chunks of size O(
√

2n).
4. Use fast boolean subset convolution on

[f ≤ max C], [g ≤ max C], where C = the current chunk.
5. Näıvely solve for the sets that got activated at the current

chunk.

17



A Detour: Min-Max Subset Convolution

We adapt Kosaraju’s algorithm for min-max sequence conv [20]:

Overview
1. Collect values of f, g into a common list L.
2. Sort L.
3. Divide L in chunks of size O(

√
2n).

4. Use fast boolean subset convolution on
[f ≤ max C], [g ≤ max C], where C = the current chunk.

5. Näıvely solve for the sets that got activated at the current
chunk.

17



A Detour: Min-Max Subset Convolution

We adapt Kosaraju’s algorithm for min-max sequence conv [20]:

Overview
1. Collect values of f, g into a common list L.
2. Sort L.
3. Divide L in chunks of size O(

√
2n).

4. Use fast boolean subset convolution on
[f ≤ max C], [g ≤ max C], where C = the current chunk.

5. Näıvely solve for the sets that got activated at the current
chunk.

17



A Detour: Min-Max Subset Convolution

We adapt Kosaraju’s algorithm for min-max sequence conv [20]:

Overview
1. Collect values of f, g into a common list L.
2. Sort L.
3. Divide L in chunks of size O(

√
2n).

4. Use fast boolean subset convolution on
[f ≤ max C], [g ≤ max C], where C = the current chunk.

5. Näıvely solve for the sets that got activated at the current
chunk.

17



Strongly-Polynomial Approximation Algorithm

Back to our initial goal: Strongly-polynomial approx.

BKW’s Framework Meets Subset Convolutions
• Applying BKW’s framework [18] would only yield Õ(2

3n
2 /ε).

• However, this can be improved.
• We adapt their refined analysis to the subset setting.
• Final runtime: Õ(2

3n
2 /

√
ε).

18



Strongly-Polynomial Approximation Algorithm

Back to our initial goal: Strongly-polynomial approx.

BKW’s Framework Meets Subset Convolutions
• Applying BKW’s framework [18] would only yield Õ(2

3n
2 /ε).

• However, this can be improved.
• We adapt their refined analysis to the subset setting.

• Final runtime: Õ(2
3n
2 /

√
ε).

18



Strongly-Polynomial Approximation Algorithm

Back to our initial goal: Strongly-polynomial approx.

BKW’s Framework Meets Subset Convolutions
• Applying BKW’s framework [18] would only yield Õ(2

3n
2 /ε).

• However, this can be improved.
• We adapt their refined analysis to the subset setting.
• Final runtime: Õ(2

3n
2 /

√
ε).

18



How To Enable Approximation: Example
Min-Cost k-Coloring
Let c : V (G) × [k] → {−M, . . . , M} be the cost function.

Mimimize:
∑

v∈V (G)
c(v, χ(v)).

Define:

si(X) =


∑
x∈X

c(x, i), if X is an independent set,

+∞, otherwise.

Optimal cost: (s1 ⋆ . . . ⋆ sk)(X), for X ∈ 2V (G).

Approach
• Fix a relative error δ > 0.
• Hence, the total error is (1 + δ)k−1.
• Set δ := Θ(ε/(k − 1)).

19



How To Enable Approximation: Example
Min-Cost k-Coloring
Let c : V (G) × [k] → {−M, . . . , M} be the cost function.

Mimimize:
∑

v∈V (G)
c(v, χ(v)).

Define:

si(X) =


∑
x∈X

c(x, i), if X is an independent set,

+∞, otherwise.

Optimal cost: (s1 ⋆ . . . ⋆ sk)(X), for X ∈ 2V (G).

Approach
• Fix a relative error δ > 0.
• Hence, the total error is (1 + δ)k−1.
• Set δ := Θ(ε/(k − 1)).

19



How To Enable Approximation: Example
Min-Cost k-Coloring
Let c : V (G) × [k] → {−M, . . . , M} be the cost function.

Mimimize:
∑

v∈V (G)
c(v, χ(v)).

Define:

si(X) =


∑
x∈X

c(x, i), if X is an independent set,

+∞, otherwise.

Optimal cost: (s1 ⋆ . . . ⋆ sk)(X), for X ∈ 2V (G).

Approach
• Fix a relative error δ > 0.
• Hence, the total error is (1 + δ)k−1.
• Set δ := Θ(ε/(k − 1)).

19



How To Enable Approximation: Example
Min-Cost k-Coloring
Let c : V (G) × [k] → {−M, . . . , M} be the cost function.

Mimimize:
∑

v∈V (G)
c(v, χ(v)).

Define:

si(X) =


∑
x∈X

c(x, i), if X is an independent set,

+∞, otherwise.

Optimal cost: (s1 ⋆ . . . ⋆ sk)(X), for X ∈ 2V (G).

Approach
• Fix a relative error δ > 0.
• Hence, the total error is (1 + δ)k−1.
• Set δ := Θ(ε/(k − 1)).

19



How To Enable Approximation: Example
Min-Cost k-Coloring
Let c : V (G) × [k] → {−M, . . . , M} be the cost function.

Mimimize:
∑

v∈V (G)
c(v, χ(v)).

Define:

si(X) =


∑
x∈X

c(x, i), if X is an independent set,

+∞, otherwise.

Optimal cost: (s1 ⋆ . . . ⋆ sk)(X), for X ∈ 2V (G).

Approach

• Fix a relative error δ > 0.
• Hence, the total error is (1 + δ)k−1.
• Set δ := Θ(ε/(k − 1)).

19



How To Enable Approximation: Example
Min-Cost k-Coloring
Let c : V (G) × [k] → {−M, . . . , M} be the cost function.

Mimimize:
∑

v∈V (G)
c(v, χ(v)).

Define:

si(X) =


∑
x∈X

c(x, i), if X is an independent set,

+∞, otherwise.

Optimal cost: (s1 ⋆ . . . ⋆ sk)(X), for X ∈ 2V (G).

Approach
• Fix a relative error δ > 0.

• Hence, the total error is (1 + δ)k−1.
• Set δ := Θ(ε/(k − 1)).

19



How To Enable Approximation: Example
Min-Cost k-Coloring
Let c : V (G) × [k] → {−M, . . . , M} be the cost function.

Mimimize:
∑

v∈V (G)
c(v, χ(v)).

Define:

si(X) =


∑
x∈X

c(x, i), if X is an independent set,

+∞, otherwise.

Optimal cost: (s1 ⋆ . . . ⋆ sk)(X), for X ∈ 2V (G).

Approach
• Fix a relative error δ > 0.
• Hence, the total error is (1 + δ)k−1.

• Set δ := Θ(ε/(k − 1)).

19



How To Enable Approximation: Example
Min-Cost k-Coloring
Let c : V (G) × [k] → {−M, . . . , M} be the cost function.

Mimimize:
∑

v∈V (G)
c(v, χ(v)).

Define:

si(X) =


∑
x∈X

c(x, i), if X is an independent set,

+∞, otherwise.

Optimal cost: (s1 ⋆ . . . ⋆ sk)(X), for X ∈ 2V (G).

Approach
• Fix a relative error δ > 0.
• Hence, the total error is (1 + δ)k−1.
• Set δ := Θ(ε/(k − 1)).

19



Discussion

Summary
• Out-of-the-box exp-time (1 + ε)-approximations.

• Swiss-army knife: (1 + ε)-approximate min-sum subset conv.
• Refreshed subset convs in tropical semi-rings after ≈20 years.

(Major) Open Problems
• Polynomial speedups for min-sum subset convolution.

→ (min, +) sequence convolution has a rich literature.
• Conjecture similar to that in the sequence setting [14, 15]:

Conjecture
There is no O((3 − δ)npolylog(M))-time exact algorithm for
min-sum subset convolution, with δ > 0.

20



Discussion

Summary
• Out-of-the-box exp-time (1 + ε)-approximations.
• Swiss-army knife: (1 + ε)-approximate min-sum subset conv.

• Refreshed subset convs in tropical semi-rings after ≈20 years.

(Major) Open Problems
• Polynomial speedups for min-sum subset convolution.

→ (min, +) sequence convolution has a rich literature.
• Conjecture similar to that in the sequence setting [14, 15]:

Conjecture
There is no O((3 − δ)npolylog(M))-time exact algorithm for
min-sum subset convolution, with δ > 0.

20



Discussion

Summary
• Out-of-the-box exp-time (1 + ε)-approximations.
• Swiss-army knife: (1 + ε)-approximate min-sum subset conv.
• Refreshed subset convs in tropical semi-rings after ≈20 years.

(Major) Open Problems
• Polynomial speedups for min-sum subset convolution.

→ (min, +) sequence convolution has a rich literature.
• Conjecture similar to that in the sequence setting [14, 15]:

Conjecture
There is no O((3 − δ)npolylog(M))-time exact algorithm for
min-sum subset convolution, with δ > 0.

20



Discussion

Summary
• Out-of-the-box exp-time (1 + ε)-approximations.
• Swiss-army knife: (1 + ε)-approximate min-sum subset conv.
• Refreshed subset convs in tropical semi-rings after ≈20 years.

(Major) Open Problems
• Polynomial speedups for min-sum subset convolution.

→ (min, +) sequence convolution has a rich literature.

• Conjecture similar to that in the sequence setting [14, 15]:

Conjecture
There is no O((3 − δ)npolylog(M))-time exact algorithm for
min-sum subset convolution, with δ > 0.

20



Discussion

Summary
• Out-of-the-box exp-time (1 + ε)-approximations.
• Swiss-army knife: (1 + ε)-approximate min-sum subset conv.
• Refreshed subset convs in tropical semi-rings after ≈20 years.

(Major) Open Problems
• Polynomial speedups for min-sum subset convolution.

→ (min, +) sequence convolution has a rich literature.
• Conjecture similar to that in the sequence setting [14, 15]:

Conjecture
There is no O((3 − δ)npolylog(M))-time exact algorithm for
min-sum subset convolution, with δ > 0.

20



References I
Sourav Chatterji, Sai Surya Kiran Evani, Sumit Ganguly, and
Mahesh Datt Yemmanuru.
On the complexity of approximate query optimization.
In Proceedings of the twenty-first ACM
SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, pages 282–292, 2002.

Donald Kossmann and Konrad Stocker.
Iterative dynamic programming: A new class of query
optimization algorithms.
ACM Trans. Database Syst., 25(1):43–82, mar 2000.

20



References II
Leonidas Fegaras.
A new heuristic for optimizing large queries.
In Proceedings of the 9th International Conference on
Database and Expert Systems Applications, DEXA ’98, page
726–735, Berlin, Heidelberg, 1998. Springer-Verlag.

Chiang Lee, Chi-Sheng Shih, and Yaw-Huei Chen.
Optimizing large join queries using a graph-based approach.
IEEE Transactions on Knowledge and Data Engineering,
13(2):298–315, 2001.

Thomas Neumann and Bernhard Radke.
Adaptive optimization of very large join queries.
In Proceedings of the 2018 International Conference on
Management of Data, SIGMOD ’18, page 677–692, New York,
NY, USA, 2018. Association for Computing Machinery.

20



References III
Stuart E Dreyfus and Robert A Wagner.
The steiner problem in graphs.
Networks, 1(3):195–207, 1971.

Daniel Rehfeldt and Thorsten Koch.
On the exact solution of prize-collecting steiner tree problems.
INFORMS Journal on Computing, 34(2):872–889, 2022.

Marek Cygan, Fedor V Fomin, Lukasz Kowalik, Daniel
Lokshtanov, Dániel Marx, Marcin Pilipczuk, Micha l Pilipczuk,
Saket Saurabh, Marek Cygan, Fedor V Fomin, et al.
Algebraic techniques: sieves, convolutions, and polynomials.
Parameterized Algorithms, pages 321–355, 2015.

20



References IV
Sebastian Böcker and Florian Rasche.
Towards de novo identification of metabolites by analyzing
tandem mass spectra.
In Christian Huber, Oliver Kohlbacher, Michal Linial, Katrin
Marcus, and Knut Reinert, editors, Computational Proteomics,
volume 8101 of Dagstuhl Seminar Proceedings (DagSemProc),
pages 1–5, Dagstuhl, Germany, 2008. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik.
Juha Harviainen and Mikko Koivisto.
Revisiting bayesian network learning with small vertex cover.
In Robin J. Evans and Ilya Shpitser, editors, Uncertainty in
Artificial Intelligence, UAI 2023, July 31 - 4 August 2023,
Pittsburgh, PA, USA, volume 216 of Proceedings of Machine
Learning Research, pages 819–828. PMLR, 2023.

20



References V
Oriana Ponta, Falk Hüffner, and Rolf Niedermeier.
Speeding up dynamic programming for some np-hard graph
recoloring problems.
In Theory and Applications of Models of Computation: 5th
International Conference, TAMC 2008, Xi’an, China, April
25-29, 2008. Proceedings 5, pages 490–501. Springer, 2008.

Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko
Koivisto.
Fourier meets möbius: fast subset convolution.
In Proceedings of the thirty-ninth annual ACM symposium on
Theory of computing, pages 67–74, 2007.

20



References VI
Bernhard Fuchs, Walter Kern, D Molle, Stefan Richter, Peter
Rossmanith, and Xinhui Wang.
Dynamic programming for minimum steiner trees.
Theory of Computing Systems, 41:493–500, 2007.

Marek Cygan, Marcin Mucha, Karol Wegrzycki, and Micha l
W lodarczyk.
On problems equivalent to (min,+)-convolution.
ACM Transactions on Algorithms (TALG), 15(1):1–25, 2019.

Marvin Künnemann, Ramamohan Paturi, and Stefan
Schneider.
On the fine-grained complexity of one-dimensional dynamic
programming.
arXiv preprint arXiv:1703.00941, 2017.

20



References VII
Arturs Backurs, Piotr Indyk, and Ludwig Schmidt.
Better approximations for tree sparsity in nearly-linear time.
In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 2215–2229. SIAM,
2017.
Marcin Mucha, Karol Wegrzycki, and Micha l W lodarczyk.
A subquadratic approximation scheme for partition.
In Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 70–88. SIAM, 2019.

Karl Bringmann, Marvin Künnemann, and Karol Wegrzycki.
Approximating apsp without scaling: equivalence of
approximate min-plus and exact min-max.
In Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing, pages 943–954, 2019.

20



References VIII
K. Wegrzycki.
Provably Optimal Dynamic Programming.
2019.
S.R. Kosaraju.
Efficient tree pattern matching.
In 30th Annual Symposium on Foundations of Computer
Science, pages 178–183, 1989.

20


