DPconv:
Super-Polynomially
Faster Join Ordering

Mihail Stoian, Andreas Kipf

Data Systems Lab @UTN

@SIGMOD’25, June 25, 2025

Technisch
Universitat
NUrnberg

Join Ordering Recap

SQL Query

SELECT =*

FROM R, Ry, R3, R4
WHERE R;.a = Rs.b
AND RQ.C - Rg.d

AND R;g.e = R.1.f

Join Ordering Recap

SQL Query Query Graph
SELECT * Ry Ry
FROM R;, R, Rz, R4
WHERE Ri.a = R>.b
AND Rs.c = Rs3.d
AND R3.e = R4.f R4 R3

Join Ordering Recap

SQL Query Query Graph Query Plan
SELECT * Ry Ry <
FROM R, Ry, R3, R4 / \
WHERE Ri.a = R>.b > >
AND Ry.c = Rs.d YA /X
AND R3.e = Ry.f Ry R3 R Ry Rjs R4

A Long Quest

Research Laboratory.

IBM Research Division,

ABSTRACT: In a high level query and data
manipulation language such as SQL, requests
are stated non-procedurally, without refer-
ence to access paths. This paper describes
how System R chooses access paths for both
simple (single relation) and complex que-
ries (such as joins), given a user specifi-
cation of desired data as a boolean
expression of predicates. System R is an
experimental database management system
developed to carry out research on the rela-
tional model of data. System R was designed
and built by members of the IBM San Jose

Access Path Selection
in a Relational Database Management System

P. Griffiths Selinger
M. M. Astrahan
D. D. Chamberlin
R. A. Lorie
T. G. Price

San Jose, California 95193

access path for each table in the SQL state-
ment. Of the many possible choices, the
optimizer chooses the one which minimizes
“total access cost” for performing the
entire statement.

This paper will address the issues of
access path selection for queries.
Retrieval for data manipulation (UPDATE,
DELETE) 1is treated similarly. Section 2
will describe the place of the optimizer in
the processing of a SQL statement, and sec-
tion 3 will describe the storage component
access paths that are available on a single
physically stored table. In section 4 the

A Long Quest

in a Relaf

IBM Reqg

Rapid Bushy Join-order Optimization
with Cartesian Products

Bennet Vance

Oregon Graduate Institute of Science & Technology

bennet@cse.ogi.edu
http://www.cse.ogi.edu/DISC

David Maier
Oregon Graduate Institute of Science & Technology
maier@cse.ogi.edu
http://www.cse.ogi.edu/DISC

ABSTRACT: In a high level query and data
manipulation language such as SQL, requests
are stated non-procedurally, without refer-
ence to access paths. This paper describes
how System R chooses access paths for both
simple (single relation) and complex que-
ries (such as joins), given a user specifi-
desired data as a boolean
expression of predicates. System R is an
system
developed to carry out research on the rela-
tional model of data. System R was designed
and built by members of the IBM San Jose

cation of

experimental database management

Research Laboratory.

access path for each table in the SQL state-
ment. Of the many possible choices, the
optimizer chooses the one which minimizes
“total access cost” for performing the
entire statement.

This paper will address the issues of
access path selection for queries.
Retrieval for data manipulation (UPDATE,
DELETE) 1is treated similarly. Section 2
will describe the place of the optimizer in
the processing of a SQL statement, and sec-
tion 3 will describe the storage component
access paths that are available on a single
physically stored table. In section 4 the

A Long Quest

in a Relat

Oregon Graduate

IBM Res

ABSTRACT: In a high level query and data
manipulation language such as SQL, requests
are stated non-procedurally, without refer-
ence to access paths. This paper describes
how System R chooses access paths for both
simple (single relation) and complex que-
ries (such as joins), given a user specifi-
cation of desired data as a boolean
expression of predicates. System R 1is an
experimental database management system
developed to carry out research on the rela-
tional model of data. System R was designed
and built by members of the IBM San Jose
Research Laboratory.

Rapid Bushy Join-order Optimization
with Cartesian Products

B . . .
Analysis of Two Existing and One New Dynamic
o Programming Algorithm for the Generation of Optimal
i Bushy Join Trees without Cross Products
access Guido Moerkotte Thomas Neumann
ment. University of Mannheim Max Planck Institute for Informatics
el 68131 Mannheim 66123 Saarbriicken
entire Germany Germany
o moerkotte@informatik.uni-mannheim.de neumann@mpi-inf.mpg.de

TUTDTTT
DELETE) 1is treated similarly. Section 2
will describe the place of the optimizer in
the processing of a SQL statement, and sec-
tion 3 will describe the storage component
access paths that are available on a single
physically stored table. In section 4 the

A Long Quest

in a Relat

Oregon Graduate

IBM Res

ABSTRACT: In a high level query and data
manipulation language such as SQL, requests
are stated non-procedurally, without refer-
ence to access paths. This paper describes
how System R chooses access paths for both
simple (single relation) and complex que-
ries (such as joins), given a user specifi-
cation of desired data as a boolean
expression of predicates. System R is an
experimental database management system
developed to carry out research on the rela-
tional model of data. System R was designed
and built by members of the IBM San Jose
Research Laboratory.

Rapid Bushy Join-order Optimization
with Cartesian Products

o JE

B . . .
Analysis of Two Existing and One New Dynamic
» Programming Algorithm for the Generation of Optimal
i Bushy Join Trees without Cross Products
access Guido Moerkotte Thomas Neumann
ment. University of Mannheim Max Planck Institute for Informatics
el 68131 Mannheim 66123 Saarbriicken
entire Germany Germany
oS moerkotte@informatik.uni-mannheim.de neumann@mpi-inf.mpg.de

TUTDrIT;
DELETE) 1is treated similarly. Section 2
will describe the place of the optimizer in
the processing of a SQL statement, and sec-
tion 3 will describe the storage component
access paths that are available on a single
physically stored table. In section 4 the

A Long Quest

Rapid Bushy Join-order Optimization

with Cartesian Products Q -
< -
in a Relat

Oregon Graduaf Analysis of Two Existi;ig 7a7r71670ne New Dynamic
v Programming Algorithm for the Generation of Optimal
e Bushy Join Trees without Cross Products

~ 1. AA [y -

q]
formatics

Efficiently Computing Join Orders with Heuristic Search
npg.de
IMMANUEL HAFFNER, Saarland University, Saarland Informatics Campus, Germany

JENS DITTRICH, Saarland University, Saarland Informatics Campus, Germany

A Long Quest

Rapid Bushy Join-order Optimization
with Cartesian Products

in a Relal

Oregon G,,,d\mf Analysis of Two Existing and One New Dynamic
v Programming Algorithm for the Generation of Optimal
b/ Bushy Join Trees without Cross Products

TBM Ret

nn
Iformatics

Efficiently Computing Join Orders with Heuristic Search -
npg.de

IMMANUEL HAFFNER, Saarland University, Saarland Informatics Campus, Germany

JENS DITTRICH, Saarland University, Saarland Informatics Campus, Germany

10

A Long Quest

Rapid Bushy Join-order Optimization
with Cartesian Products

- today

Oregon G,.,duaf b Analysi_s of Two I_Existing and One Neyv Dynamif:
DPconv: Super-Polynomially Faster Join Ordering
Efficiently Computing J
IMMANUEL HAFFNER, Saarland Uniy Mihail Stoian Andreas Kipf
JENS DITTRICH, Saarland University, S
UTN UTN
Nuremberg, Germany Nuremberg, Germany

mihail stoian@utn.de andreas.kipf@utn.de

DPconv

12

Cost Functions

5K
X
10K 4 X 20K

13

Cost Functions

C

: 10K + 20K + 8K

14

Cost Functions

C 10K+ 20K + 8K

C, ... max {10K, 20K, 5K}

15

DPconv

Exact Cmax

O(3")

DPconv

Exact Cmax

O(3")

O(2"n%)

DPconv

ExactC__
O(3")

ﬂ super-polynomial

O(2"n%)

18

DPconv

ExactC__ Approximate C_

O(3" O(3")

t

O(2"n%) O*(2"log W / €)

DPconv

ExactC__ Approximate C_
O(3") O@3")
super-polynomial ﬂ

O(2"n%) O*(2"log W / €)

t

DPconv

ExactC__ Approximate C_
O(3") O@3")
super-polynomial ﬂ

O(2"n%) O*(2"log W / €)

t

Beyond Theory

Optimizing clique queries with Cpax

_ 8001 —*— DPsub[max]: O(3") A

a2,

o DPconv [max]: O(2"n?3)

£ 600

= ~30x
£ 400 1 faster
N

£

3

o

) 10 15 20 25
Number of relations (n)

22

Dynamic Programming

e Bellman’s optimality principle.
e GivensetS & {1, ..., n}
o ¢(S) = Join cardinality of S.

o DPI[S] = Optimal cost to join relations in S.

e = Solution: DP[{1, ..., n}].

23

Dynamic Programming

e Bellman’s optimality principle.
e GivensetS & {1, ..., n}
o ¢(S) = Join cardinality of S.

o DPI[S] = Optimal cost to join relations in S.

e = Solution: DP[{1, ..., n}].

S\ T

24

Dynamic Programming

e Bellman’s optimality principle. /\

e GivensetS & {1, ..., n}

©)

©)

c(S) = Join cardinality of S.
DP[S] = Optimal cost to join relations in S.

e = Solution: DP[{1, ..., n}]. T S\ T

e Recursion for Cout:

DP[S] = (DP[T]+DP[S\ T])

25

Dynamic Programming

e Bellman’s optimality principle.
e GivensetS & {1, ..., n}
o ¢(S) = Join cardinality of S.
o DP[S] = Optimal cost to join relations in S.

e = Solution: DP[{1, ..., n}]. T
e Recursion for C_: S\ T
DP[5] = min (DP[T] + DP[S \ T])

TCS

26

Dynamic Programming

e Bellman’s optimality principle. /\

e GivensetS & {1, ..., n}
o ¢(S) = Join cardinality of S.
o DPI[S] = Optimal cost to join relations in S.
e = Solution: DP[{1, ..., n}l. T S\ T

e Recursion for Cout:

DP[S] = ¢($) + min (DP[T] + DP[S\ T])

27

Dynamic Programming

X
Bellman’s optimality principle. /\
GivensetS <€ {1, ..., n}
o ¢(S) = Join cardinality of S.
o DPI[S] = Optimal cost to join relations in S.
= Solution: DP[{1, ..., n}]. T S\ T

Recursion for C_ ;:
DPI[S] = ¢(5) + min (DP[T] + DP[S\ T])
Running time: B

Z 15|

5C[n] ”s

Dynamic Programming

Bellman’s optimality principle. /\

GivensetS <€ {1, ..., n}
o ¢(S) = Join cardinality of S.
o DPI[S] = Optimal cost to join relations in S.
= Solution: DP[{1, ..., n}]. T S\ T

Recursion for C_ ;:
DPI[S] = ¢(5) + min (DP[T] + DP[S\ T])
Running time: j

Yo 2l = Z (Z) ok

SC|n] k=0
29

Dynamic Programming

Bellman’s optimality principle. /\

GivensetS <€ {1, ..., n}
o ¢(S) = Join cardinality of S.
o DPI[S] = Optimal cost to join relations in S.
= Solution: DP[{1, ..., n}]. T S\ T

Recursion for Cout:

DP[S] = ¢($) + min (DP[T] + DP[S\ T])

Running time: n

NS (Z)zk —(1+2)"=3"

SC|[n] k=0
30

FOURIER MEETS MOBIUS: FAST SUBSET CONVOLUTION

ANDREAS BJORKLUND, THORE HUSFELDT, PETTERI KASKI, AND MIKKO KOIVISTO

ABSTRACT. We present a fast algorithm for the subset convolution problem: given functions f and
g defined on the lattice of subsets of an n-element set N, compute their subset convolution f * g,
defined for all S C N by

(f*9)(S) =D f(T)g(S\T),

TCS

31

FOURIER MEETS MOBIUS: FAST SUBSET CONVOLUTION

ANDREAS BJORKLUND, THORE HUSFELDT, PETTERI KASKI, AND MIKKO KOIVISTO

ABSTRACT. We present a fast algorithm for the subset convolution problem: given functions f and
g defined on the lattice of subsets of an n-element set N, compute their subset convolution f * g,

defined for all S C N by

=

(f*9)(S) =Y [F(M)g(S\T)

TCS

32

FOURIER MEETS MOBIUS: FAST SUBSET CONVOLUTION

ANDREAS BJORKLUND, THORE HUSFELDT, PETTERI KASKI, AND MIKKO KOIVISTO

ABSTRACT. We present a fast algorithm for the subset convolution problem: given functions f and
g defined on the lattice of subsets of an n-element set N, compute their subset convolution f * g,

defined for all S C N by

=

(f*9)(S) =Y [F(M)g(S\T)

TCS

(+, x)

33

FOURIER MEETS MOBIUS: FAST SUBSET CONVOLUTION

ANDREAS BJORKLUND, THORE HUSFELDT, PETTERI KASKI, AND MIKKO KOIVISTO

ABSTRACT. We present a fast algorithm for the subset convolution problem: given functions f and
g defined on the lattice of subsets of an n-element set N, compute their subset convolution f * g,

defined for all S C N by

=

(f *9)(5) = %f(T)g(S\T)

+, x)

34

FOURIER MEETS MOBIUS: FAST SUBSET CONVOLUTION

ANDREAS BJORKLUND, THORE HUSFELDT, PETTERI KASKI, AND MIKKO KOIVISTO

ABSTRACT. We present a fast algorithm for the subset convolution problem: given functions f and
g defined on the lattice of subsets of an n-element set N, compute their subset convolution f * g,

defined for all S C N by

=

(f *9)(5) = f(T)g(S \T)

+

35

FOURIER MEETS MOBIUS: FAST SUBSET CONVOLUTION

ANDREAS BJORKLUND, THORE HUSFELDT, PETTERI KASKI, AND MIKKO KOIVISTO

ABSTRACT. We present a fast algorithm for the subset convolution problem: given functions f and
g defined on the lattice of subsets of an n-element set N, compute their subset convolution f * g,

defined for all S C N by
(f*9)(S) =D f(T)g(S\T),

TCS

where addition and multiplication is carried out in an arbitrary ring. Via Mobius transform and
inversion, our algorithm evaluates the subset convolution in O(n?2™) additions and multiplications,
substantially improving upon the straightforward O(3") algorithm. Specifically, if the input func-

36

O Ring vs. C Semi-Ring: Intuition

e Ring example: (+, x).
o 2+3=05.
o 5+ (-2)=3.

37

O Ring vs. C Semi-Ring: Intuition

e Ring example: (+, x).
o 2+3=5.
o 5+ (-2)=3.
e Semi-ring example: (min, +), (Min, max).
o min(2, 3) =3.
o How to reverse?

38

How to Map?

e Find a mapping:

(+, x) = (Min, +)

39

How to Map?

e Find a mapping:
(+,) = (min, +)

. Represent a value v as x¥

[
A=

40

How to Map?

e Find a mapping:
(+,) = (min, +)

Represent a value v as x¥ — e.g., 5 is represented as x°.

[
A=

41

How to Map?
e Motivation: Find a mapping:
(+, x) = (min, +)
e . Representavaluevasx¥— e.g., 5is represented as x°.

“+” becomes product: xa+P = x@xP

“min” = extracting the lowest monomial

42

How to Map?

e Motivation: Find a mapping:
(+, x) = (Min, +)
e . Representavaluevasx¥— e.g., 5is represented as x°.

“+” becomes product: xa+P = x@xP

“min” = extracting the lowest monomial

e Drawback: Running time becomes pseudo-polynomial.
o O(W) overhead, where W is the largest value.

43

Takeaway

e |[tis possible to map a semi-ring to a ring. Drawback:
0@"3) — O*2"W).

e Thereis a case where we can avoid the O(W) factor.

44

Avoiding
pseudo-polynomiality

Optimizing C_
e Ad-hoc dynamic programming:

DP[S] = max {DP[T],DP[S \ T]}

S\ T

46

Optimizing C_
e Ad-hoc dynamic programming:

DP[S] = min max {DP[T], DP[S\ T]}

S\ T

47

Optimizing C_

e Ad-hoc dynamic programming:

DP[S] = max {C(S), rTnclr; max {DP[T],DP[S\ T}

S\ T

48

Optimizing C_
e Ad-hoc dynamic programming:
DP[S] = max {C(S), rTnclr; max {DP[T], DP[S \ T]}}

e . The DP does not create new values!

=8

[

S\ T

49

Optimizing C_
e Ad-hoc dynamic programming: /\

DP[S] = max {C(S), rTnclr; max {DP[T], DP[S \ T]}}

=8

[

e . The DP does not create new values! S\T

= We can binary search DP[{1, ..., n}].

50

Optimizing C__ : Algorithm

e Fix a cardinality U.
e Rescale the join cardinalities:

o <U-—-1.

o >U-—>D0.

51

Optimizing C__ : Algorithm

e Fix a cardinality U.
e Rescale the join cardinalities:

o <U-—-1.

o >U—=0.
{1,2.3}
[t]
{12} {1.3} {2,3}
2] [+ [3]
U=2
{1} {2} {3}
5 | [40] [80]

52

Optimizing C__ : Algorithm

e Fix a cardinality U.
e Rescale the join cardinalities:

o <U-—-1.

o >U-—>D0.
{1,2,3}
[t]

{1.2) 13) {2,3)

(2] [«] |

{1} {2} {3}

(%] [@m] [

{1.2.3}
L]
(1,2} {13}
[] [)
U=2
{1} {2} (3}

[] [

53

Optimizing C__ : Algorithm

e Fix a cardinality U.
e Rescale the join cardinalities:

o =U-—1.
o >U-—-0.
e Runthe DP in the (+, x) ring:

DP[S] =

DP[T]-DP[S\ T]

54

Optimizing C__ : Algorithm

e Fix a cardinality U.
e Rescale the join cardinalities:

o =U-—1.
o >U-—-0.
e Runthe DP in the (+, x) ring:

DP[S] = Y DP[T]-DP[S\ T]

TCS

55

Optimizing C__ : Algorithm

e Fix a cardinality U.
e Rescale the join cardinalities:

o =U-—1.
o >U-—-0.
e Runthe DP in the (+, x) ring:

DP[S] = c(S)+) DP[T]-DP[S\ T}

TCS

56

Optimizing C__ : Algorithm

e Fix a cardinality U.
e Rescale the join cardinalities:

o =U-—1.
o >U-—-0.
e Runthe DP in the (+, x) ring:

DP[S] = c(S)+) DP[T]-DP[S\ T}

TCS

e I[fDP[{1,...,n}]>0 = Uisfeasible.

57

Optimizing C__ : Algorithm

e Fix a cardinality U.
e Rescale the join cardinalities:

o =U-—1.
o >U-—-0.
e Runthe DP in the (+, x) ring:

DP[S] = c(S)+) DP[T]-DP[S\ T}
TCS

e I[fDP[{1,...,n}]>0 = Uisfeasible.
e Running time: O(log(2") - 2™"n?) = O(2"n®).

58

The End?

e DPconv does not take into account the sparsity of the graph.
= We need a sparse subset convolution.
e [olynomial-space join ordering?

= Preliminary results for acyclic query graphs.

59

