
DPconv:
Super-Polynomially
Faster Join Ordering
Mihail Stoian, Andreas Kipf

Data Systems Lab @UTN

@SIGMOD’25, June 25, 2025



Join Ordering Recap

2

SQL Query



Join Ordering Recap

3

SQL Query Query Graph



Join Ordering Recap

4

SQL Query Query Graph Query Plan



A Long Quest 

5

SIGMOD’79 ⇒ DPsize



A Long Quest

6

SIGMOD’79

SIGMOD’96 ⇒ DPsub

SIGMOD’79



A Long Quest

7

SIGMOD’79

SIGMOD’96 ⇒ DPsub

SIGMOD’79
DPccp

VLDB’06



A Long Quest

8

SIGMOD’79SIGMOD’79
DPccp

SIGMOD’96 ⇒ DPsub

VLDB’06



A Long Quest

9

SIGMOD’79SIGMOD’79

SIGMOD’23 ⇒ A*

SIGMOD’96 ⇒ DPsub

DPccp

VLDB’06



A Long Quest

10



A Long Quest

11

today



DPconv

12



Cost Functions

13

R1 R2

⨝

R3 R4

⨝

⨝

20K

5K

10K



Cost Functions

14

Cout: 10K + 20K + 5K

R1 R2

⨝

R3 R4

⨝

⨝

20K

5K

10K



Cost Functions

15

Cmax: max {10K, 20K, 5K}

R1 R2

⨝

R3 R4

⨝

⨝

20K

5K

10K

Cout: 10K + 20K + 5K



16

DPconv

O(3n)

Exact Cmax



17

DPconv

O(3n)

Exact Cmax

O(2nn3)



18

DPconv

O(3n)

Exact Cmax

O(2nn3)

super-polynomial



19

DPconv

O(3n)

Exact Cmax

O(2nn3)

Approximate Cout

O(3n)

O*(2n log W / ε)



20

DPconv

O(3n)

Exact Cmax

O(2nn3)

Approximate Cout

O(3n)

super-polynomial

O*(2n log W / ε)



21

DPconv

O(3n)

Exact Cmax

O(2nn3)

Approximate Cout

O(3n)

O*(2n log W / ε)

super-polynomial



Beyond Theory

22

~30x 
faster



Dynamic Programming

● Bellman’s optimality principle.
● Given set S ⊆ {1, …, n}:

○ c(S) = Join cardinality of S.
○ DP[S] = Optimal cost to join relations in S.

● ⇒ Solution: DP[{1, …, n}].

23



Dynamic Programming

● Bellman’s optimality principle.
● Given set S ⊆ {1, …, n}:

○ c(S) = Join cardinality of S.
○ DP[S] = Optimal cost to join relations in S.

● ⇒ Solution: DP[{1, …, n}].

24

⨝
c(S)

T
S \ T



Dynamic Programming

● Bellman’s optimality principle.
● Given set S ⊆ {1, …, n}:

○ c(S) = Join cardinality of S.
○ DP[S] = Optimal cost to join relations in S.

● ⇒ Solution: DP[{1, …, n}].
● Recursion for Cout:

25

⨝
c(S)

T
S \ T



Dynamic Programming

● Bellman’s optimality principle.
● Given set S ⊆ {1, …, n}:

○ c(S) = Join cardinality of S.
○ DP[S] = Optimal cost to join relations in S.

● ⇒ Solution: DP[{1, …, n}].
● Recursion for Cout:

26

⨝
c(S)

T
S \ T



Dynamic Programming

● Bellman’s optimality principle.
● Given set S ⊆ {1, …, n}:

○ c(S) = Join cardinality of S.
○ DP[S] = Optimal cost to join relations in S.

● ⇒ Solution: DP[{1, …, n}].
● Recursion for Cout:

27

⨝
c(S)

T
S \ T



Dynamic Programming

● Bellman’s optimality principle.
● Given set S ⊆ {1, …, n}:

○ c(S) = Join cardinality of S.
○ DP[S] = Optimal cost to join relations in S.

● ⇒ Solution: DP[{1, …, n}].
● Recursion for Cout:

● Running time:

28

⨝
c(S)

T
S \ T



Dynamic Programming

● Bellman’s optimality principle.
● Given set S ⊆ {1, …, n}:

○ c(S) = Join cardinality of S.
○ DP[S] = Optimal cost to join relations in S.

● ⇒ Solution: DP[{1, …, n}].
● Recursion for Cout:

● Running time:

29

⨝
c(S)

T
S \ T



Dynamic Programming

● Bellman’s optimality principle.
● Given set S ⊆ {1, …, n}:

○ c(S) = Join cardinality of S.
○ DP[S] = Optimal cost to join relations in S.

● ⇒ Solution: DP[{1, …, n}].
● Recursion for Cout:

● Running time:

30

⨝
c(S)

T
S \ T



31

STOC’06



32

STOC’06



33

STOC’06

(+, ×)



34

STOC’06

(+, ×)



35

STOC’06

(+, ×)



36

STOC’06



〇 Ring vs. 〇Semi-Ring: Intuition

● Ring example: (+, ×).
○ 2 + 3 = 5.
○ 5 + (-2) = 3.

37



〇 Ring vs. 〇Semi-Ring: Intuition

● Ring example: (+, ×).
○ 2 + 3 = 5.
○ 5 + (-2) = 3.

● Semi-ring example: (min, +), (min, max).
○ min(2, 3) = 3.
○ How to reverse?

38



How to Map?

● Find a mapping:

(+, ×) ⇒ (min, +)

39



How to Map?

● Find a mapping:

(+, ×) ⇒ (min, +)

● 💡 Represent a value v as xv

40



How to Map?

● Find a mapping:

(+, ×) ⇒ (min, +)

● 💡 Represent a value v as xv → e.g., 5 is represented as x5.

41



How to Map?

● Motivation: Find a mapping:

(+, ×) ⇒ (min, +)

● 💡 Represent a value v as xv → e.g., 5 is represented as x5.

“+” becomes product: xa+b = xaxb

“min” = extracting the lowest monomial

42



How to Map?

● Motivation: Find a mapping:

(+, ×) ⇒ (min, +)

● 💡 Represent a value v as xv → e.g., 5 is represented as x5.

“+” becomes product: xa+b = xaxb

“min” = extracting the lowest monomial

● Drawback: Running time becomes pseudo-polynomial.
○ O(W) overhead, where W is the largest value.

43



Takeaway

● It is possible to map a semi-ring to a ring. Drawback:

O(2nn2)        O*(2n W).
● There is a case where we can avoid the O(W) factor.

44



45

Avoiding
pseudo-polynomiality



Optimizing Cmax

● Ad-hoc dynamic programming:
●

46

⨝
c(S)

T
S \ T



Optimizing Cmax

● Ad-hoc dynamic programming:
●

47

⨝
c(S)

T
S \ T



Optimizing Cmax

● Ad-hoc dynamic programming:
●

48

⨝
c(S)

T
S \ T



Optimizing Cmax

● Ad-hoc dynamic programming:
●

● 💡 The DP does not create new values!

49

⨝
c(S)

T
S \ T



Optimizing Cmax

● Ad-hoc dynamic programming:
●

● 💡 The DP does not create new values!

⇒ We can binary search DP[{1, …, n}]. 

50

⨝
c(S)

T
S \ T



Optimizing Cmax: Algorithm

● Fix a cardinality U.
● Rescale the join cardinalities:

○ ≤ U → 1.
○ > U → 0.

51



Optimizing Cmax: Algorithm

● Fix a cardinality U.
● Rescale the join cardinalities:

○ ≤ U → 1.
○ > U → 0.

52



Optimizing Cmax: Algorithm

● Fix a cardinality U.
● Rescale the join cardinalities:

○ ≤ U → 1.
○ > U → 0.

53



Optimizing Cmax: Algorithm

● Fix a cardinality U.
● Rescale the join cardinalities:

○ ≤ U → 1.
○ > U → 0.

● Run the DP in the (+, ×) ring:

54



Optimizing Cmax: Algorithm

● Fix a cardinality U.
● Rescale the join cardinalities:

○ ≤ U → 1.
○ > U → 0.

● Run the DP in the (+, ×) ring:

55



Optimizing Cmax: Algorithm

● Fix a cardinality U.
● Rescale the join cardinalities:

○ ≤ U → 1.
○ > U → 0.

● Run the DP in the (+, ×) ring:

56



Optimizing Cmax: Algorithm

● Fix a cardinality U.
● Rescale the join cardinalities:

○ ≤ U → 1.
○ > U → 0.

● Run the DP in the (+, ×) ring:

● If DP[{1, …, n}] > 0 ⇒ U is feasible.

57



Optimizing Cmax: Algorithm

● Fix a cardinality U.
● Rescale the join cardinalities:

○ ≤ U → 1.
○ > U → 0.

● Run the DP in the (+, ×) ring:

● If DP[{1, …, n}] > 0 ⇒ U is feasible.
● Running time: O(log(2n) ∙ 2nn2) = O(2nn3).

58



The End?

● DPconv does not take into account the sparsity of the graph.

⇒ We need a sparse subset convolution.

● Polynomial-space join ordering?

⇒ Preliminary results for acyclic query graphs.

59


