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Cmax: max {10K, 20K, 5K}
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Beyond Theory
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~30x 
faster



Dynamic Programming

● Bellman’s optimality principle.
● Given set S ⊆ {1, …, n}:

○ c(S) = Join cardinality of S.
○ DP[S] = Optimal cost to join relations in S.

● ⇒ Solution: DP[{1, …, n}].
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〇 Ring vs. 〇Semi-Ring: Intuition

● Ring example: (+, ×).
○ 2 + 3 = 5.
○ 5 + (-2) = 3.
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〇 Ring vs. 〇Semi-Ring: Intuition

● Ring example: (+, ×).
○ 2 + 3 = 5.
○ 5 + (-2) = 3.

● Semi-ring example: (min, +), (min, max).
○ min(2, 3) = 3.
○ How to reverse?
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How to Map?
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How to Map?

● Motivation: Find a mapping:

(+, ×) ⇒ (min, +)

● 💡 Represent a value v as xv → e.g., 5 is represented as x5.

“+” becomes product: xa+b = xaxb

“min” = extracting the lowest monomial

● Drawback: Running time becomes pseudo-polynomial.
○ O(W) overhead, where W is the largest value.
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Takeaway

● It is possible to map a semi-ring to a ring. Drawback:

O(2nn2)        O*(2n W).
● There is a case where we can avoid the O(W) factor.
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Avoiding
pseudo-polynomiality



Optimizing Cmax

● Ad-hoc dynamic programming:
●
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Optimizing Cmax

● Ad-hoc dynamic programming:
●

● 💡 The DP does not create new values!
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Optimizing Cmax

● Ad-hoc dynamic programming:
●

● 💡 The DP does not create new values!

⇒ We can binary search DP[{1, …, n}]. 
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Optimizing Cmax: Algorithm

● Fix a cardinality U.
● Rescale the join cardinalities:

○ ≤ U → 1.
○ > U → 0.

51



Optimizing Cmax: Algorithm

● Fix a cardinality U.
● Rescale the join cardinalities:

○ ≤ U → 1.
○ > U → 0.

52



Optimizing Cmax: Algorithm

● Fix a cardinality U.
● Rescale the join cardinalities:

○ ≤ U → 1.
○ > U → 0.

53



Optimizing Cmax: Algorithm

● Fix a cardinality U.
● Rescale the join cardinalities:

○ ≤ U → 1.
○ > U → 0.

● Run the DP in the (+, ×) ring:

54



Optimizing Cmax: Algorithm

● Fix a cardinality U.
● Rescale the join cardinalities:

○ ≤ U → 1.
○ > U → 0.

● Run the DP in the (+, ×) ring:

55



Optimizing Cmax: Algorithm

● Fix a cardinality U.
● Rescale the join cardinalities:

○ ≤ U → 1.
○ > U → 0.

● Run the DP in the (+, ×) ring:

56



Optimizing Cmax: Algorithm

● Fix a cardinality U.
● Rescale the join cardinalities:

○ ≤ U → 1.
○ > U → 0.

● Run the DP in the (+, ×) ring:

● If DP[{1, …, n}] > 0 ⇒ U is feasible.

57



Optimizing Cmax: Algorithm

● Fix a cardinality U.
● Rescale the join cardinalities:

○ ≤ U → 1.
○ > U → 0.

● Run the DP in the (+, ×) ring:

● If DP[{1, …, n}] > 0 ⇒ U is feasible.
● Running time: O(log(2n) ∙ 2nn2) = O(2nn3).
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The End?

● DPconv does not take into account the sparsity of the graph.

⇒ We need a sparse subset convolution.

● Polynomial-space join ordering?

⇒ Preliminary results for acyclic query graphs.

59


