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Join Ordering Recap

SQL Query

SELECT =*

FROM R, Ry, R3, R4
WHERE R;.a = Rs.b
AND RQ.C - Rg.d

AND R;g.e = R.1.f



Join Ordering Recap

SQL Query Query Graph
SELECT * Ry Ry
FROM R;, R, Rz, R4
WHERE Ri.a = R>.b
AND Rs.c = Rs3.d
AND R3.e = R4.f R4 R3




Join Ordering Recap

SQL Query Query Graph Query Plan
SELECT * Ry Ry <
FROM R, Ry, R3, R4 / \
WHERE Ri.a = R>.b > >
AND Ry.c = Rs.d YA /X
AND R3.e = Ry.f Ry R3 R Ry Rjs R4
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ABSTRACT: In a high level query and data
manipulation language such as SQL, requests
are stated non-procedurally, without refer-
ence to access paths. This paper describes
how System R chooses access paths for both
simple (single relation) and complex que-
ries (such as joins), given a user specifi-
cation of desired data as a boolean
expression of predicates. System R is an
experimental database management system
developed to carry out research on the rela-
tional model of data. System R was designed
and built by members of the IBM San Jose
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access path for each table in the SQL state-
ment. Of the many possible choices, the
optimizer chooses the one which minimizes
“total access cost” for performing the
entire statement.

This paper will address the issues of
access path selection for queries.
Retrieval for data manipulation (UPDATE,
DELETE) 1is treated similarly. Section 2
will describe the place of the optimizer in
the processing of a SQL statement, and sec-
tion 3 will describe the storage component
access paths that are available on a single
physically stored table. In section 4 the
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Cost Functions

5K
X
10K 4 X 20K

13



Cost Functions

C

: 10K + 20K + 8K
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Cost Functions

C 10K+ 20K + 8K

C, ... max {10K, 20K, 5K}
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DPconv

Exact Cmax

O(3")
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ExactC__
O(3")

ﬂ super-polynomial

O(2"n%)
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Beyond Theory

Optimizing clique queries with Cpax
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o DPconv [max]: O(2"n?3)
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Dynamic Programming

e Bellman’s optimality principle.
e GivensetS & {1, ..., n}
o ¢(S) = Join cardinality of S.

o DPI[S] = Optimal cost to join relations in S.

e = Solution: DP[{1, ..., n}].
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Dynamic Programming

e Bellman’s optimality principle. /\

e GivensetS & {1, ..., n}

©)

©)

c(S) = Join cardinality of S.
DP[S] = Optimal cost to join relations in S.

e = Solution: DP[{1, ..., n}]. T S\ T

e Recursion for Cout:

DP[S] = (DP[T]+DP[S\ T])
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Dynamic Programming

e Bellman’s optimality principle.
e GivensetS & {1, ..., n}
o ¢(S) = Join cardinality of S.
o DP[S] = Optimal cost to join relations in S.

e = Solution: DP[{1, ..., n}]. T
e Recursion for C_: S\ T
DP[5] = min (DP[T] + DP[S \ T])

TCS
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Dynamic Programming

e Bellman’s optimality principle. /\

e GivensetS & {1, ..., n}
o ¢(S) = Join cardinality of S.
o DPI[S] = Optimal cost to join relations in S.
e = Solution: DP[{1, ..., n}l. T S\ T

e Recursion for Cout:

DP[S] = ¢($) + min (DP[T] + DP[S\ T])
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Dynamic Programming

X
Bellman’s optimality principle. /\
GivensetS <€ {1, ..., n}
o ¢(S) = Join cardinality of S.
o DPI[S] = Optimal cost to join relations in S.
= Solution: DP[{1, ..., n}]. T S\ T

Recursion for C_ ;:
DPI[S] = ¢(5) + min (DP[T] + DP[S\ T])
Running time: B
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Dynamic Programming

Bellman’s optimality principle. /\

GivensetS <€ {1, ..., n}
o ¢(S) = Join cardinality of S.
o DPI[S] = Optimal cost to join relations in S.
= Solution: DP[{1, ..., n}]. T S\ T

Recursion for Cout:

DP[S] = ¢($) + min (DP[T] + DP[S\ T])

Running time: n
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FOURIER MEETS MOBIUS: FAST SUBSET CONVOLUTION

ANDREAS BJORKLUND, THORE HUSFELDT, PETTERI KASKI, AND MIKKO KOIVISTO

ABSTRACT. We present a fast algorithm for the subset convolution problem: given functions f and
g defined on the lattice of subsets of an n-element set N, compute their subset convolution f * g,
defined for all S C N by

(f*9)(S) =D f(T)g(S\T),

TCS
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defined for all S C N by
(f*9)(S) =D f(T)g(S\T),
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where addition and multiplication is carried out in an arbitrary ring. Via Mobius transform and
inversion, our algorithm evaluates the subset convolution in O(n?2™) additions and multiplications,
substantially improving upon the straightforward O(3") algorithm. Specifically, if the input func-
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O Ring vs. C Semi-Ring: Intuition

e Ring example: (+, x).
o 2+3=05.
o 5+ (-2)=3.
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O Ring vs. C Semi-Ring: Intuition

e Ring example: (+, x).
o 2+3=5.
o 5+ (-2)=3.
e Semi-ring example: (min, +), (Min, max).
o min(2, 3) =3.
o How to reverse?
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How to Map?

e Find a mapping:

(+, x) = (Min, +)
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How to Map?

e Find a mapping:
(+, ) = (min, +)

. Represent a value v as x¥

[
A=
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How to Map?

e Find a mapping:
(+, ) = (min, +)

Represent a value v as x¥ — e.g., 5 is represented as x°.

[
A=
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How to Map?
e Motivation: Find a mapping:
(+, x) = (min, +)
e . Representavaluevasx¥— e.g., 5is represented as x°.

“+” becomes product: xa+P = x@xP

“min” = extracting the lowest monomial
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How to Map?

e Motivation: Find a mapping:
(+, x) = (Min, +)
e . Representavaluevasx¥— e.g., 5is represented as x°.

“+” becomes product: xa+P = x@xP

“min” = extracting the lowest monomial

e Drawback: Running time becomes pseudo-polynomial.
o O(W) overhead, where W is the largest value.
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Takeaway

e |[tis possible to map a semi-ring to a ring. Drawback:
0@"3) — O*2"W).

e Thereis a case where we can avoid the O(W) factor.
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Avoiding
pseudo-polynomiality



Optimizing C_
e Ad-hoc dynamic programming:

DP[S] = max {DP[T],DP[S \ T]}

S\ T
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Optimizing C_
e Ad-hoc dynamic programming:

DP[S] = min max {DP[T], DP[S\ T]}

S\ T
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Optimizing C_

e Ad-hoc dynamic programming:

DP[S] = max {C(S), rTnclr; max {DP[T],DP[S\ T}

S\ T
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Optimizing C_
e Ad-hoc dynamic programming:
DP[S] = max {C(S), rTnclr; max {DP[T], DP[S \ T]}}

e . The DP does not create new values!

=8

[

S\ T

49



Optimizing C_
e Ad-hoc dynamic programming: /\

DP[S] = max {C(S), rTnclr; max {DP[T], DP[S \ T]}}

=8

[

e . The DP does not create new values! S\T

= We can binary search DP[{1, ..., n}].
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Optimizing C__ : Algorithm

e Fix a cardinality U.
e Rescale the join cardinalities:

o <U-—-1.

o >U-—>D0.
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Optimizing C__ : Algorithm

e Fix a cardinality U.
e Rescale the join cardinalities:

o <U-—-1.

o >U—=0.
{1,2.3}
[t ]
{12} {1.3} {2,3}
2] [+ [3]
U=2
{1} {2} {3}
5 | [ 40 ] [ 80 ]
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Optimizing C__ : Algorithm

e Fix a cardinality U.
e Rescale the join cardinalities:

o <U-—-1.

o >U-—>D0.
{1,2,3}
[t ]

{1.2) 13) {2,3)

(2 ] [« ] |

{1} {2} {3}

(%] [@m] [

{1.2.3}
L]
(1,2} {13}
[ ] [ )
U=2
{1} {2} (3}

[ ] [
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Optimizing C__ : Algorithm

e Fix a cardinality U.
e Rescale the join cardinalities:

o =U-—1.
o >U-—-0.
e Runthe DP in the (+, x) ring:

DP[S] =

DP[T]-DP[S\ T]
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Optimizing C__ : Algorithm

e Fix a cardinality U.
e Rescale the join cardinalities:

o =U-—1.
o >U-—-0.
e Runthe DP in the (+, x) ring:

DP[S] = c(S)+ ) DP[T]-DP[S\ T}

TCS

e I[fDP[{1,...,n}]>0 = Uisfeasible.
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Optimizing C__ : Algorithm

e Fix a cardinality U.
e Rescale the join cardinalities:

o =U-—1.
o >U-—-0.
e Runthe DP in the (+, x) ring:

DP[S] = c(S)+ ) DP[T]-DP[S\ T}
TCS

e I[fDP[{1,...,n}]>0 = Uisfeasible.
e Running time: O(log(2") - 2™"n?) = O(2"n®).
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The End?

e DPconv does not take into account the sparsity of the graph.
= We need a sparse subset convolution.
e [olynomial-space join ordering?

= Preliminary results for acyclic query graphs.
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