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It’s not just about join ordering..

First super-polynomial speedups for einsum optimization.
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Join Ordering

Problem Statement

• Fundamental problem in query optimization.

• Statement: Given a SQL query, find the order in which to join the

relations.

• Goal: Minimize query time or memory usage.

• Cost functions – minimize:

• Cout: Sum of the intermediate sizes ≈ “I want fast queries”.

• Cmax: Maximum intermediate size ≈ “Please avoid disk spilling”.

• Research question since ∼50 years: How fast can we get?
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Join Ordering: Notation

SELECT *

FROM R1, R2, R3, R4

WHERE R1.a = R2.b

AND R2.c = R3.d

AND R3.e = R4.f

R1 R2

R3R4

’

’

R1 R2

’

R3 R4

Query graph Join tree
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Join Ordering: Dynamic Programming

Dynamic Programming

• Use Bellman’s optimality principle.

• Dynamic programming table DP[S ]: The optimal cost to join the

relations in the set S .

⇒ Solution value: DP[{1, . . . , n}].
• Optimize DP[S ] as

DP[S ] = c(S) + min
T⊆S

(DP[T ] +DP[S \ T ]).1

Running Time Analysis

∑
S⊆[n]

2|S| =
n∑

k=0

(
n

k

)
2k = (1 + 2)n = 3n.

1For Cmax, replace both + by max.
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Join Ordering: Status Quo

Exact Algorithms

• Selinger et al. (1979): DPsizeLinear2 → Θ(2nn).

• Vance and Maier (1996): DPsub → Θ(3n).

• Moerkotte and Neumann (2006): DPccp → Θ(#ccp).

• Haffner and Dietrich (2023): A∗ → O(#ccp).

Approximation Algorithms

• Many good heuristics, yet no theoretical guarantees.

• For a good reason: it’s hard [1]:

• NP-hard to approximate the optimal cost K within 2Θ(logδ−1 K) for

any δ > 0.

2Left-deep only.
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Our Results

TL;DR

Join Ordering DP = Subset Convolution

6



Our Results: Formally

Let W be the largest join cardinality. Then,

• Cout: Can be solved in O∗(2nW ) time.3

• Cout: Can be (1 + ε)-approximated in O∗(2n logW /ε) time.

• Cmax: Can be solved in O(2nn3) time (does not depend on W ).

Implications

• Cmax: Super-polynomial speedup.

• Cout: First (1 + ε)-approximation algorithm.

• Beyond databases: einsum optimization.

• Used in quantum circuit simulation.

• Speedup over the state-of-the-art algorithm in opt einsum.

3O∗ hides polynomial factors in n.
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Overview: Part I

General Framework

• Join ordering DP:

DP[S ] = c(S)⊗ min
T⊆S

(DP[T ]⊗DP[S \ T ]).

• Subset convolution in the (min,⊗) semi-ring:

(f ⋆ g)(S) = min
T⊆S

(f (T )⊗ g(S \ T )).

• In other words:

DP[S ] = c(S)⊗ (DP ⋆DP)(S).

• Instantiations:

• Cout: (min,+).

• Cmax: (min,max).
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Overview: Part II
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Overview: Part II

Fast Subset Convolution

• Evaluating convolutions in semi-rings is hard – O(3n).

• Convolution in the (+,×) ring is much faster – O(2nn2):

(f ∗ g)(S) =
∑
T⊆S

f (T ) · g(S \ T ).

• Good news: We can map a semi-ring into a ring via polynomials.

• Represent a value v as xv .
• Intuition:

• “+” becomes product: xa+b = xaxb.

• “min” is just taking the lowest monomial.

• Bad news: Running time becomes pseudopolynomial: O∗(2nW ),

where W is the largest value in f and g .

Where to go?
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Overview: Part III

DPconv: Takeaway

• No pseudopolynomial factor when we optimize for Cmax.

• No pseudopolynomial factor when we move to (1 + ε)-approximation

→ Cout can be (1 + ε)-approximated in O∗(2n logW /ε).4

4Or in O∗(2
3n
2 /

√
ε)-time, however this is not yet practical.
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Fast Convolutions: Intuition

f

g

🪄

🪄

f’

g’

🐈 🪄

-1

f 🐆 g🐆
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Fast Subset Convolution

• Same principle: Transform the functions by a magic box.

• Our magic box – zeta transform:

ζf (S) =
∑
T⊆S

f (T ),

for a subset S ⊆ [n].

• Naive evaluation: O(3n).

• Clever evaluation: O(2nn).
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Zeta Transform: Hands-On

• You have 1 minute to fill up:

5

{1,2,3}

3

{1,2}
4

{1,3}
2

{2,3}

7

{1}
6

{2}
9

{3}

0

H

{1,2,3}

{1,2} {1,3} {2,3}

{1} {2} {3}

H

ζ

Figure 1: How to compute the zeta transform of a set function.
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Zeta Transform: Hands-On

5

{1,2,3}

3

{1,2}
4

{1,3}
2

{2,3}

7

{1}
6

{2}
9

{3}

0

H

36

{1,2,3}

16

{1,2}
20

{1,3}
17

{2,3}

7

{1}
6

{2}
9

{3}

0

H

ζ

Figure 2: How to compute the zeta transform of a set function.
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Fast Zeta Transform: Pseudocode

zeta(f):

for d in range(n):

for S in range (2**n):

if S & 2**d:

f[S] += f[S ^ 2**d]

5

{1,2,3}

3

{1,2}
4

{1,3}
2

{2,3}

7

{1}
6

{2}
9

{3}

0

H
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Inverse Zeta Transform

• ”Wait, you also need the inverted magic box, right?”

• The inverse of the zeta transform:

µf (S) =
∑
T⊆S

(−1)|S\T |f (T ).

• In other words: f = µζf = ζµf .
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Inverse Zeta Transform: Example

5

{1,2,3}

3

{1,2}
4

{1,3}
2

{2,3}

7

{1}
6

{2}
9

{3}

0

H

36

{1,2,3}

16

{1,2}
20

{1,3}
17

{2,3}

7

{1}
6

{2}
9

{3}

0

H

ζ

µ

Figure 3: Inverting the zeta transform.
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Fast Subset Convolution

First attempt

1. Magic box: ζf , ζg .

2. Compute ζf · ζg .
3. Inverted magic box: µ(ζf · ζg).
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f (U)g(V ).
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3. Inverted magic box: µ(ζf · ζg).

Unfortunately, this only computes∑
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U ∪ V = S
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How can we fix it?
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Optimizing Cmax

• Ad-hoc dynamic programming:

DP[S ] = max

{
c(S), min

T⊂S
max {DP[T ],DP[S \ T ]}

}
.

• Note: The DP does not create any new values!

→ We can binary search the optimal value DP[{1, . . . , n}].
• Fix a join cardinality γ and define a new cardinality function:

c ′(S) = if c(S) ≤ γ then 1 else 0.

• Now just run the (+,×) dynamic programming with c ′:

DP[S ] = c ′(S) +
∑
T⊂S

DP[T ] ·DP[S \ T ].

• If DP[{1, . . . , n}] > 0, then γ is feasible.
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Optimizing Cmax

ą γ ď γ
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Figure 4: How DPconv optimizes Cmax.
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Optimizing Cmax: Example

1K

{1,2,3}

2M

{1,2}
3M

{1,3}
3M

{2,3}

50M

{1}
40M

{2}
80M

{3}

0M

H

{1,2,3}

{1,2} {1,3} {2,3}

{1} {2} {3}

H

γ “ 1M

Figure 5: The cardinalities > γ are ignored.
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Optimizing Cout

• Ad-hoc DP: O(3n).

• Cout is working in the (min,+) semi-ring.

→ Using the FSC framework, we obtain a O∗(2nW )-time algorithm.

• However, this is not so practical in the context of join ordering.

→ Join cardinalities can be very large.

• Two open questions in algorithm design research:

• Is O(3n) the best we can do for (min,+) subset convolution?

• Is the pseudopolynomial O(W ) factor actually needed?
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Joint Optimization: Ccap = Cmax + Cout

Motivation Ccap

• Optimizing for Cmax alone may lead to slow plans.

→ Also enforce that we have an optimal Cout plan.

• First run DPccp with Cmax, then Cout with a threshold.

• However, this is slower:
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Joint Optimization: Ccap = Cmax + Cout

(Very) Simple Solution

• Replace DPccp in Cmax optimization by DPconv.
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Approximating Cout?

Recall: Cout takes O
∗(2nW )-time with our framework.

How to dissolve the pseudopolynomial factor?

• We will approximate the optimal value of Cout within 1 + ε.

• Example: The optimal plan has Cout = 400K and ε = 1%.

→ Then we obtain a plan of cost ≤ 404K .

• Running time: O∗(2n logW /ε).
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Approximate (min,+) Subset Convolution

Definition

Given two set functions f , g , approximate their (min,+) subset

convolution:

(f ⋆ g)(S) ≤ h̃(S) ≤ (1 + ε)(f ⋆ g)(S)

for all S ⊆ [n], with ε > 0.

How to employ it

• Fix a relative error δ > 0.

• Hence, the total error is (1 + δ)n−1.

• To obtain (1 + ε)-approximation, simply set δ := Θ(ε/(n − 1)).
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Evaluation

Benchmarks

• Clique queries with cardinalities c(S) s.t. c(S) ≤ c(S1) · c(S1).

• When comparing to the A∗-based optimizer (SIGMOD’23), we take

their original clique queries since their algorithm performance is

sensitive to the cardinalities.

Competitors

• DPsub[max, out]: Θ(3n) – independent of the query shape.

• DPccp = DPsub on clique queries.

• A∗[out]: O(#ccp) – adapts to the cardinalities.

• DPconv[max]: Θ(2nn3) – independent of the query shape.
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Evaluation: Cmax
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Figure 7: Optimizing for Cmax on clique queries
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Evaluation: Ccap = Cmax + Cout
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Evaluation: Ccap = Cmax + Cout
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Open Problems

• Currently, DPconv is agnostic to the query shape.

• For Cmax, it always runs in O(2nn3)-time.

• We would need a sparse subset convolution.

• Sparse = Few connected subgraphs.

• Polynomial-space join ordering.

• All exact join order optimizers take exponential space.

• Example: Steiner tree can be solved in polynomial space.

• Jointly optimize the memory of concurrent queries using Cmax.

• AutoWLM [2] can predict query’s memory requirements.
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Outlook

• This summer: Internship @GSL in Barcelona with Tiemo Bang.
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Evaluation: Costs

• CEB benchmark (13,644 queries).

• 2,873 queries:

• Cout has 6.8% larger Cmax.

• Cmax looses 22.8% in Cout.

• Ccap looses only 9.5% in Cout while maintaining optimal Cmax.
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