DPconv:
Super-Polynomially Faster Join Ordering

Mihail Stoian, Andreas Kipf

©Gray Systems Lab
January 28, 2025

It’s not just about join ordering..

Nature
https://www.nature.com » articles

Quantum supremacy using a programmable ...
by F Arute - 2019 - Cited by 9186 — Therefore, in order to claim quantum supremacy we need a
quantum processor that executes the program with sufficiently low error rates. Building ...

It’s not just about join ordering..

@ Andrej Karpathy &

Writing better code with PyTorch and einops

zhnikov.github.io/eir ytorct

Nature
https:/ww)

Quantum
by F Arute - 20
quantum proce]

jacy we need a
ding ...

Wiiting better code with pytorch and einops

It’s not just about join ordering..

@ Andrej Karpathy &

Writing better code with PyTorch and einops

v.github.io/einops/pytorct

Nature
https://ww|
Quantum {
by F Arute - 20
quantum proce]

jacy we need a
ding ...

Writing better code with pytorch and einops

First super-polynomial speedups for einsum optimization.

Join Ordering

Problem Statement
e Fundamental problem in query optimization.

e Statement: Given a SQL query, find the order in which to join the
relations.

e Goal: Minimize query time or memory usage.

Join Ordering

Problem Statement
e Fundamental problem in query optimization.
e Statement: Given a SQL query, find the order in which to join the
relations.
e Goal: Minimize query time or memory usage.
e Cost functions — minimize:

e Cout: Sum of the intermediate sizes &~ | want fast queries”.

Join Ordering

Problem Statement
e Fundamental problem in query optimization.
e Statement: Given a SQL query, find the order in which to join the
relations.
e Goal: Minimize query time or memory usage.

e Cost functions — minimize:

e Cout: Sum of the intermediate sizes ~ “l want fast queries”.
e Chax: Maximum intermediate size &~ “Please avoid disk spilling”.

Join Ordering

Problem Statement
e Fundamental problem in query optimization.

e Statement: Given a SQL query, find the order in which to join the
relations.

Goal: Minimize query time or memory usage.
e Cost functions — minimize:

e Cout: Sum of the intermediate sizes ~ “l want fast queries”.
e Chax: Maximum intermediate size &~ “Please avoid disk spilling”.

Research question since ~50 years: How fast can we get?

Join Ordering: Notation

SELECT *
FROM Ri,
WHERE R;.
AND Rs.c
AND Rs.e

Ry, R3, R4
a = RQ.b

= Rs.d

= Ry.f

Ry

Ry

§

Query graph

>
VRN
/ \ / \
Ry Ry Rs3s Ry
Join tree

Join Ordering: Dynamic Programming

Dynamic Programming
e Use Bellman'’s optimality principle.

e Dynamic programming table DP[S]: The optimal cost to join the
relations in the set S.

1For Cmax, replace both + by max.

Join Ordering: Dynamic Programming

Dynamic Programming
e Use Bellman'’s optimality principle.

e Dynamic programming table DP[S]: The optimal cost to join the

relations in the set S.
= Solution value: DP[{1,...,n}].

e Optimize DP[S] as

DPIS] = ¢(S) + min (DP[T] + DP[S \ T]).!

1For Cmax, replace both + by max.

Join Ordering: Dynamic Programming

Dynamic Programming
e Use Bellman'’s optimality principle.

e Dynamic programming table DP[S]: The optimal cost to join the

relations in the set S.
= Solution value: DP[{1,...,n}].

e Optimize DP[S] as

DPIS] = ¢(S) + min (DP[T] + DP[S \ T]).!

Running Time Analysis

Y 2sl = Z <Z)2k =(1+2)"=3"

SC[n] k=0

1For Cmax, replace both + by max.

Join Ordering: Status Quo

Exact Algorithms

e Selinger et al. (1979): DPsizeLinear® — ©(2"n).

2| eft-deep only.

Join Ordering: Status Quo

Exact Algorithms
e Selinger et al. (1979): DPsizeLinear® — ©(2"n).
e Vance and Maier (1996): DPsub — ©(3").

2| eft-deep only.

Join Ordering: Status Quo

Exact Algorithms
e Selinger et al. (1979): DPsizeLinear® — ©(2"n).
e Vance and Maier (1996): DPsub — ©(3").
e Moerkotte and Neumann (2006): DPccp — O(#ccp).

2| eft-deep only.

Join Ordering: Status Quo

Exact Algorithms
e Selinger et al. (1979): DPsizeLinear® — ©(2"n).
e Vance and Maier (1996): DPsub — ©(3").
e Moerkotte and Neumann (2006): DPccp — O(#ccp).
e Haffner and Dietrich (2023): A* — O(#ccp).

2| eft-deep only.

Join Ordering: Status Quo

Exact Algorithms
e Selinger et al. (1979): DPsizeLinear® — ©(2"n).
e Vance and Maier (1996): DPsub — ©(3").
e Moerkotte and Neumann (2006): DPccp — O(#ccp).
e Haffner and Dietrich (2023): A* — O(#ccp).

Approximation Algorithms

e Many good heuristics, yet no theoretical guarantees.

2| eft-deep only.

Join Ordering: Status Quo

Exact Algorithms

Selinger et al. (1979): DPsizeLinear? — ©(2"n).
Vance and Maier (1996): DPsub — ©(3").

Moerkotte and Neumann (2006): DPccp — O(#ccp).
Haffner and Dietrich (2023): A* — O(#ccp).

Approximation Algorithms

e Many good heuristics, yet no theoretical guarantees.
e For a good reason: it's hard [1]:

e NP-hard to approximate the optimal cost K within 2008”1 K) £
any § > 0.

2| eft-deep only.

Our Results

TL;DR

Join Ordering DP = Subset Convolution

Our Results: Formally

Let W be the largest join cardinality. Then,

Our Results: Formally

Let W be the largest join cardinality. Then,

e Coui: Can be solved in O*(2"W) time.3

30* hides polynomial factors in n.

Our Results: Formally

Let W be the largest join cardinality. Then,

e Coui: Can be solved in O*(2"W) time.3
e Coui: Can be (1 + ¢)-approximated in O*(2" log W /e) time.

30* hides polynomial factors in n.

Our Results: Formally

Let W be the largest join cardinality. Then,
e Coui: Can be solved in O*(2"W) time.3
e Coui: Can be (1 + ¢)-approximated in O*(2" log W /e) time.
e Crnax: Can be solved in O(2"n?) time (does not depend on W).

30* hides polynomial factors in n.

Our Results: Formally

Let W be the largest join cardinality. Then,

e Coui: Can be solved in O*(2"W) time.3

e Coui: Can be (1 + ¢)-approximated in O*(2" log W /e) time.

e Crnax: Can be solved in O(2"n?) time (does not depend on W).
Implications

e Crax: Super-polynomial speedup.

30* hides polynomial factors in n.

Our Results: Formally

Let W be the largest join cardinality. Then,

e Coui: Can be solved in O*(2"W) time.3

e Coui: Can be (1 + ¢)-approximated in O*(2" log W /e) time.

e Crnax: Can be solved in O(2"n?) time (does not depend on W).
Implications

e Crax: Super-polynomial speedup.

e Coyut: First (1 + ¢)-approximation algorithm.

30* hides polynomial factors in n.

Our Results: Formally

Let W be the largest join cardinality. Then,

e Coui: Can be solved in O*(2"W) time.3
e Coui: Can be (1 + ¢)-approximated in O*(2" log W /e) time.
e Crnax: Can be solved in O(2"n?) time (does not depend on W).

Implications
e Crax: Super-polynomial speedup.

e Coyut: First (1 + ¢)-approximation algorithm.

e Beyond databases: einsum optimization.

30* hides polynomial factors in n.

Our Results: Formally

Let W be the largest join cardinality. Then,

e Coui: Can be solved in O*(2"W) time.3
e Coui: Can be (1 + ¢)-approximated in O*(2" log W /e) time.
e Crnax: Can be solved in O(2"n?) time (does not depend on W).

Implications
e Crax: Super-polynomial speedup.
e Coyut: First (1 + ¢)-approximation algorithm.
e Beyond databases: einsum optimization.

e Used in quantum circuit simulation.
e Speedup over the state-of-the-art algorithm in opt_einsum.

30* hides polynomial factors in n.

Overview: Part |

General Framework

e Join ordering DP:

DPIS] = ¢(S) © min (DP[T] & DP[S \ T]).

Overview: Part |

General Framework

e Join ordering DP:
DP[S] = ¢(S) ® gﬁclr; (DP[T] @ DP[S\ T)).
e Subset convolution in the (min, ®) semi-ring:

(Fxg)(S) = min (f(T)® g(S\ T)).

Overview: Part |

General Framework

e Join ordering DP:
DP[S] = ¢(S) ® Qﬁclr; (DP[T] ® DP[S\ T)).
e Subset convolution in the (min, ®) semi-ring:
(Fxg)(S) = min (f(T)® g(S\ T)).
e In other words:

DP[S] = c(S) @ (DP » DP)(S).

Overview: Part |

General Framework

e Join ordering DP:
DP[S] = ¢(S) ® [/ng”} (DP[T] @ DP[S\ T)).
e Subset convolution in the (min, ®) semi-ring:
(Fxg)(S) = min (f(T)® g(S\ T)).
e In other words:
DP[S] = ¢(S) @ (DP « DP)(S).

e Instantiations:

Overview: Part |

General Framework

e Join ordering DP:
DP[S] = ¢(S) ® [/ng”} (DP[T] @ DP[S\ T)).
e Subset convolution in the (min, ®) semi-ring:
(Fxg)(S) = min (f(T)® g(S\ T)).
e In other words:
DP[S] = ¢(S) @ (DP « DP)(S).

e Instantiations:

o Cout: (min,+).

Overview: Part |

General Framework

e Join ordering DP:
DP[S] = ¢(S) ® [/ng”} (DP[T] @ DP[S\ T)).
e Subset convolution in the (min, ®) semi-ring:
(Fxg)(S) = min (f(T)® g(S\ T)).
e In other words:
DP[S] = ¢(S) @ (DP « DP)(S).

e Instantiations:

o Cout: (min,+).
e Cnax: (min, max).

Overview: Part Il

FOURIER MEETS MOBIUS: FAST SUBSET CONVOLUTION

ANDREAS BJORKLUND, THORE HUSFELDT, PETTERI KASKI, AND MIKKO KOIVISTO

ABSTRACT. We present a fast algorithm for the subset convolution problem: given functions f and
g defined on the lattice of subsets of an n-element set N, compute their subset convolution f * g,
defined for all S C N by

(F*9)(8) =3 F(Mg(S\T),

TCS

Overview: Part Il

Fast Subset Convolution

e Evaluating convolutions in semi-rings is hard — O(3").

10

Overview: Part Il

Fast Subset Convolution
e Evaluating convolutions in semi-rings is hard — O(3").
e Convolution in the (+, x) ring is much faster — O(2"n?):

(Fxg)(S) =D f(T)-g(S\T).

TCS

10

Overview: Part Il

Fast Subset Convolution
e Evaluating convolutions in semi-rings is hard — O(3").
e Convolution in the (+, x) ring is much faster — O(2"n?):

(Fxg)(S) =D f(T)-g(S\T).

TCS

e Good news: We can map a semi-ring into a ring via polynomials.

e Represent a value v as x".
e Intuition:

e “+" becomes product: x?TP = xaxb.

e “min” is just taking the lowest monomial.

10

Overview: Part Il

Fast Subset Convolution
e Evaluating convolutions in semi-rings is hard — O(3").
e Convolution in the (+, x) ring is much faster — O(2"n?):

(Fxg)(S) =D f(T)-g(S\T).

TCS

e Good news: We can map a semi-ring into a ring via polynomials.

e Represent a value v as x".
e Intuition:

b

atb _ xaxb.

e “+" becomes product: x
e “min” is just taking the lowest monomial.

e Bad news: Running time becomes pseudopolynomial: O*(2" W),
where W is the largest value in f and g.

10

Overview: Part Il

Fast Subset Convolution
e Evaluating convolutions in semi-rings is hard — O(3").
e Convolution in the (+, x) ring is much faster — O(2"n?):

(Fxg)(S) =D f(T)-g(S\T).

TCS

e Good news: We can map a semi-ring into a ring via polynomials.

e Represent a value v as x".
e Intuition:

a+b b

e “+" becomes product: x = xx°.

e “min” is just taking the lowest monomial.

e Bad news: Running time becomes pseudopolynomial: O*(2" W),
where W is the largest value in f and g.

Where to go?

10

Overview: Part Il

DPconv: Takeaway

e No pseudopolynomial factor when we optimize for Cpax.

3
4Or in O*(27n/ﬁ)—time, however this is not yet practical.

11

Overview: Part Il

DPconv: Takeaway
e No pseudopolynomial factor when we optimize for Cpax.

e No pseudopolynomial factor when we move to (1 + ¢)-approximation
— Cout can be (1 + £)-approximated in O*(2" log W /e).#

3
4Or in O*(27n/ﬁ)—time, however this is not yet practical.

11

Fast Convolutions:

Intuition

12

Fast Subset Convolution

e Same principle: Transform the functions by a magic box.

e Our magic box — zeta transform:

¢F(8)=_ f(T),

TCS

for a subset S C [n].

13

Fast Subset Convolution

e Same principle: Transform the functions by a magic box.

e Our magic box — zeta transform:

¢F(8)=_ f(T),

TCS

for a subset S C [n].

e Naive evaluation: O(3").

13

Fast Subset Convolution

Same principle: Transform the functions by a magic box.

e Our magic box — zeta transform:

¢F(8)=_ f(T),

TCS

for a subset S C [n].

Naive evaluation: O(3").

Clever evaluation: O(2"n).

13

Zeta Transform: Hands-On

e You have 1 minute to fill up:

{123} {1,2,3}
5 _

{1,2} {13} {2,3} {1,2} {13} {2,3}
Cs] [«] [2] l)) l
{1} {2} {3} — {1} {2} {3}
7] (6 (9] \ | l l \ |

o) 1
Z %)

Figure 1: How to compute the zeta transform of a set function.

14

Zeta Transform: Hands-On

{1,2,3} {1,2,3}
{12} {13} {23} {1,2} {13} {23}
1 [ig [=J (] [=ma [
{1} {2} {3} {1} {2} {3}
1 [[1 [[

o]

z %]

Figure 2: How to compute the zeta transform of a set function.

15

Fast Zeta Transform: Pseudocode

zeta(f):
for d in range(n):
for S in range (2%**n):
if S & 2xxd:
f[s] += £[S = 2x%x*d]

{1,2,3}
I
1.2} {13} 2.3}
3 [4] 2
{1} {2} {3}
7 [6] 9
0
%]

16

Inverse Zeta Transform

e "Wait, you also need the inverted magic box, right?”

17

Inverse Zeta Transform

e "Wait, you also need the inverted magic box, right?”

e The inverse of the zeta transform:

uf(S) =Y (F)P\TIF(T).

TCS

17

Inverse Zeta Transform

e "Wait, you also need the inverted magic box, right?”

e The inverse of the zeta transform:

uf(S) =Y (F)P\TIF(T).

TCS

e In other words: f = u(f = (uf.

17

Inverse Zeta Transform: Example

{1,2.3} {1.2.3}
3
{12} {13} {23} {1,2} {13} {23}
[[4] [2] ¢ [16] 20 [17]
—_—

{1} {2} {3} — {1} {2} {3}
L7 Lo] [9] L7] 6 Lo]
o]

%] %}

Figure 3: Inverting the zeta transform.

18

Fast Subset Convolution

First attempt
1. Magic box: (f, (g.

19

Fast Subset Convolution

First attempt
1. Magic box: (f, (g.
2. Compute (f - (g.

19

Fast Subset Convolution

First attempt
1. Magic box: (f, (g.
2. Compute (f - Cg.
3. Inverted magic box: u(¢f - (g).

19

Fast Subset Convolution

First attempt
1. Magic box: (f, (g.
2. Compute (f - (g.
3. Inverted magic box: u(¢f - (g).

Unfortunately, this only computes

19

Fast Subset Convolution

First attempt
1. Magic box: (f, (g.
2. Compute (f - (g.
3. Inverted magic box: u(¢f - (g).

Unfortunately, this only computes

How can we fix it?

19

Optimizing C.,

e Ad-hoc dynamic programming:

DP[S] = max {C(S), rTnclr; max {DP[T],DP[S \ T]}} .

20

Optimizing C.,

e Ad-hoc dynamic programming:
DP[S] = max {C(S), rTnlr;_ max {DP[T],DP[S \ T]}} .
c

e Note: The DP does not create any new values!
— We can binary search the optimal value DP[{1, ..., n}].

20

Optimizing C.,

e Ad-hoc dynamic programming:
DP[S] = max {C(S), rTnlr;_ max {DP[T],DP[S \ T]}} .
c

e Note: The DP does not create any new values!
— We can binary search the optimal value DP[{1, ..., n}].

e Fix a join cardinality v and define a new cardinality function:

c'(S) =if ¢(S) <~ then 1 else 0.

20

Optimizing C.,

Ad-hoc dynamic programming:

DP[S] = max {C(S), rTnclr;_ max {DP[T],DP[S \ T]}} .

Note: The DP does not create any new values!
— We can binary search the optimal value DP[{1, ..., n}].

e Fix a join cardinality v and define a new cardinality function:

c'(S) =if ¢(S) <~ then 1 else 0.

Now just run the (4, x) dynamic programming with ¢’:

DP[S] = ¢/(S)+ »_ DP[T]-DP[S\ T].
TCS

20

Optimizing C.,

Ad-hoc dynamic programming:

DP[S] = max {C(S), rTnclr;_ max {DP[T],DP[S \ T]}} .

Note: The DP does not create any new values!
— We can binary search the optimal value DP[{1, ..., n}].

e Fix a join cardinality v and define a new cardinality function:

c'(S) =if ¢(S) <~ then 1 else 0.

Now just run the (4, x) dynamic programming with ¢’:

DP[S] = ¢/(S)+ »_ DP[T]-DP[S\ T].
TCS

If DP[{1,...,n}] > 0, then ~ is feasible.

20

Optimizing G,

Figure 4: How DPconv optimizes Cpax.

21

Optimizing C,..: Example

{1,2,3} {1,2,3}
—

{12} {13} {23} 1,2} {13} {23}
Y HEYI HEYI l] [] []
vy=1M
{1} {2} {3} {1} {2} 3}
[som | [oM] [som | l | l | l |
-

(%]

Figure 5: The cardinalities > = are ignored.

22

Optimizing C,

e Ad-hoc DP: O(3").
e Cout is working in the (min, +) semi-ring.
— Using the FSC framework, we obtain a O*(2"W)-time algorithm.

23

Optimizing C,

e Ad-hoc DP: O(3").

e Cout is working in the (min, +) semi-ring.
— Using the FSC framework, we obtain a O*(2"W)-time algorithm.

e However, this is not so practical in the context of join ordering.
— Join cardinalities can be very large.

23

Optimizing C,

Ad-hoc DP: O(3").

Cout is working in the (min, +) semi-ring.

— Using the FSC framework, we obtain a O*(2"W)-time algorithm.

e However, this is not so practical in the context of join ordering.
— Join cardinalities can be very large.

e Two open questions in algorithm design research:

23

Optimizing C,

Ad-hoc DP: O(3").

Cout is working in the (min, +) semi-ring.

— Using the FSC framework, we obtain a O*(2"W)-time algorithm.

e However, this is not so practical in the context of join ordering.
— Join cardinalities can be very large.
e Two open questions in algorithm design research:

e Is O(3") the best we can do for (min, +) subset convolution?

23

Optimizing C,

Ad-hoc DP: O(3").

Cout is working in the (min, +) semi-ring.

— Using the FSC framework, we obtain a O*(2"W)-time algorithm.

e However, this is not so practical in the context of join ordering.
— Join cardinalities can be very large.
e Two open questions in algorithm design research:

e Is O(3") the best we can do for (min, +) subset convolution?
e Is the pseudopolynomial O(W) factor actually needed?

23

Joint Optimization: C., = G + Gous

Motivation C.,p

e Optimizing for Cyax alone may lead to slow plans.

— Also enforce that we have an optimal C,y plan.

24

Joint Optimization: C., = G + Gous

Motivation C.,p

e Optimizing for Cyax alone may lead to slow plans.
— Also enforce that we have an optimal C,y plan.

e First run DPccp with Cpax, then G,y with a threshold.

24

Joint Optimization: C., = G + Gous

Motivation C.,;

e Optimizing for Cnax alone may lead to slow plans.
— Also enforce that we have an optimal C, plan.
e First run DPccp with Chax, then Gyt with a threshold.

e However, this is slower:

JOB
30

DPccp: Cout
7 @M DPccp: Ceap I

0 L -
12 14 17
Number of relations (n)

Optimization time [ms]

Figure 6: Initial overhead in optimizing Cap on JOB

24

Joint Optimization: C., = G + Gous

(Very) Simple Solution

e Replace DPccp in G,y Optimization by DPconv.

25

Approximating C,,;?

Recall: Cout takes O*(2"W)-time with our framework.

How to dissolve the pseudopolynomial factor?

26

Approximating C,,;?

Recall: Cout takes O*(2"W)-time with our framework.

How to dissolve the pseudopolynomial factor?

e We will approximate the optimal value of C,, within 1+ ¢.

26

Approximating C,,;?

Recall: Cout takes O*(2"W)-time with our framework.

How to dissolve the pseudopolynomial factor?

o We will approximate the optimal value of Gyt within 1+ €.

e Example: The optimal plan has Coy¢ = 400K and e = 1%.
— Then we obtain a plan of cost < 404K.

26

Approximating C,,;?

Recall: Cout takes O*(2"W)-time with our framework.

How to dissolve the pseudopolynomial factor?

o We will approximate the optimal value of Gyt within 1+ €.

e Example: The optimal plan has Coy¢ = 400K and e = 1%.
— Then we obtain a plan of cost < 404K.

e Running time: O*(2"log W /e).

26

Approximate (min, +) Subset Convolution

Definition
Given two set functions f, g, approximate their (min, +) subset
convolution:

(fx£)(S) < h(S) < (1+2)(f xg)(S)

for all S C [n], with £ > 0.

27

Approximate (min, +) Subset Convolution

Definition
Given two set functions f, g, approximate their (min, +) subset

convolution:
(Fx&)(S) < h(S) < (1+=)(f x&)(S)

for all S C [n], with £ > 0.

How to employ it

e Fix a relative error 6 > 0.

27

Approximate (min, +) Subset Convolution

Definition
Given two set functions f, g, approximate their (min, +) subset

convolution:
(Fx&)(S) < h(S) < (1+=)(f x&)(S)

for all S C [n], with £ > 0.

How to employ it
e Fix a relative error 6 > 0.

e Hence, the total error is (1 +)" 1.

27

Approximate (min, +) Subset Convolution

Definition
Given two set functions f, g, approximate their (min, +) subset

convolution:
(Fx&)(S) < h(S) < (1+=)(f x&)(S)

for all S C [n], with £ > 0.

How to employ it
e Fix a relative error 6 > 0.

e Hence, the total error is (1 +)" 1.

e To obtain (1 + ¢)-approximation, simply set § := ©(g/(n — 1)).

27

Evaluation

Benchmarks

e Clique queries with cardinalities c(S) s.t. ¢(S) < ¢(51) - ¢(51).

28

Evaluation

Benchmarks
e Clique queries with cardinalities c(S) s.t. ¢(S) < ¢(51) - ¢(51).

e When comparing to the A*-based optimizer (SIGMOD'23), we take
their original clique queries since their algorithm performance is
sensitive to the cardinalities.

Competitors

e DPsub[max, out]: ©(3") — independent of the query shape.

28

Evaluation

Benchmarks
e Clique queries with cardinalities c(S) s.t. ¢(S) < ¢(51) - ¢(51).

e When comparing to the A*-based optimizer (SIGMOD'23), we take
their original clique queries since their algorithm performance is
sensitive to the cardinalities.

Competitors
e DPsub[max, out]: ©(3") — independent of the query shape.

e DPccp = DPsub on clique queries.

28

Evaluation

Benchmarks
e Clique queries with cardinalities c(S) s.t. ¢(S) < ¢(51) - ¢(51).

e When comparing to the A*-based optimizer (SIGMOD'23), we take
their original clique queries since their algorithm performance is
sensitive to the cardinalities.

Competitors
e DPsub[max, out]: ©(3") — independent of the query shape.
e DPccp = DPsub on clique queries.

e A*[out]: O(#ccp) — adapts to the cardinalities.

28

Evaluation

Benchmarks
e Clique queries with cardinalities c(S) s.t. ¢(S) < ¢(51) - ¢(51).
e When comparing to the A*-based optimizer (SIGMOD'23), we take

their original clique queries since their algorithm performance is
sensitive to the cardinalities.

Competitors
e DPsub[max, out]: ©(3") — independent of the query shape.

e DPccp = DPsub on clique queries.

A*[out]: O(#ccp) — adapts to the cardinalities.
DPconv [max]: ©(2"n%) — independent of the query shape.

Evaluation: G,

Optimization time]

Optimizing clique queries with Cpax

800

600

400

200 -+

—#— DPsub[max]: O(3")
DPconv [max]: O(2"n?)

Figure 7:

10 15 20 25
Number of relations (n)

Optimizing for Cnax on clique queries

29

Evaluation

Optimization time [s]

: Ccap =5 Cmax + Cout

Optimizing clique queries: DPconv vs. A* [18]

15 4 AY + Dzerot Optimizes Cout
—4— DPconv[max] + DPsub[out]: Optimizes Ccap
DPconv [max]: Optimizes Chax
10 1
5 -
0-¢$i==$$$$$$$»’=$=}¢—f}’*
4 6 8 10 12 14 16 18

Number of relations (n)

Figure 8: Optimizing for Cous and Ceap on clique queries

30

Evaluation:

Ccap =5 Cmax + Cout

Slowdown over vanilla, Coyt

Optimizing clique queries with Cl,y,

x
=)

I DPsub([max] + DPsub[out]

DPconv [max] + DPsub[out] |

T T T T T T T T T T

5 16 17 18 19 20 21 2 23 2
Number of relations (n)

Figure 9: Optimizing for Ccap on clique queries

31

Open Problems

e Currently, DPconv is agnostic to the query shape.
e For Chay, it always runs in O(2"n3)—time.
e \We would need a sparse subset convolution.
e Sparse = Few connected subgraphs.

32

Open Problems

e Currently, DPconv is agnostic to the query shape.
e For Chay, it always runs in O(2"n3)—time.
e \We would need a sparse subset convolution.
e Sparse = Few connected subgraphs.
e Polynomial-space join ordering.
e All exact join order optimizers take exponential space.
e Example: Steiner tree can be solved in polynomial space.

32

Open Problems

e Currently, DPconv is agnostic to the query shape.

e For Chay, it always runs in O(2"n3)—time.
e \We would need a sparse subset convolution.
e Sparse = Few connected subgraphs.

e Polynomial-space join ordering.
e All exact join order optimizers take exponential space.
e Example: Steiner tree can be solved in polynomial space.

e Jointly optimize the memory of concurrent queries using Cpax.

e AutoWLM [2] can predict query’s memory requirements.

32

Outlook

e This summer: Internship @GSL in Barcelona with Tiemo Bang.

33

[§ S. Chatterji, S. S. K. Evani, S. Ganguly, and M. D. Yemmanuru.
On the Complexity of Approximate Query Optimization.
In L. Popa, S. Abiteboul, and P. G. Kolaitis, editors, Proceedings of
the Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, June 3-5, Madison, Wisconsin,
USA, pages 282-292. ACM, 2002.

@ G. Saxena, M. Rahman, N. Chainani, C. Lin, G. Caragea,
F. Chowdhury, R. Marcus, T. Kraska, |. Pandis, and B. M.
Narayanaswamy.
Auto-WLM: Machine Learning Enhanced Workload
Management in Amazon Redshift.
In S. Das, |. Pandis, K. S. Candan, and S. Amer-Yahia, editors,
Companion of the 2023 International Conference on Management of
Data, SIGMOD/PODS 2023, Seattle, WA, USA, June 18-23, 2023,
pages 225-237. ACM, 2023.

Evaluation: Costs

e CEB benchmark (13,644 queries).
e 2 873 queries:

e Cout has 6.8% larger Crax.
o Cpax looses 22.8% in Cous.

e Ceap looses only 9.5% in Cous while maintaining optimal Crax.

	Appendix

