
DPconv:

Super-Polynomially Faster Join Ordering

Mihail Stoian, Andreas Kipf

@Gray Systems Lab

January 28, 2025

It’s not just about join ordering..

1

It’s not just about join ordering..

1

It’s not just about join ordering..

First super-polynomial speedups for einsum optimization.

1

Join Ordering

Problem Statement

• Fundamental problem in query optimization.

• Statement: Given a SQL query, find the order in which to join the

relations.

• Goal: Minimize query time or memory usage.

• Cost functions – minimize:

• Cout: Sum of the intermediate sizes ≈ “I want fast queries”.

• Cmax: Maximum intermediate size ≈ “Please avoid disk spilling”.

• Research question since ∼50 years: How fast can we get?

2

Join Ordering

Problem Statement

• Fundamental problem in query optimization.

• Statement: Given a SQL query, find the order in which to join the

relations.

• Goal: Minimize query time or memory usage.

• Cost functions – minimize:

• Cout: Sum of the intermediate sizes ≈ “I want fast queries”.

• Cmax: Maximum intermediate size ≈ “Please avoid disk spilling”.

• Research question since ∼50 years: How fast can we get?

2

Join Ordering

Problem Statement

• Fundamental problem in query optimization.

• Statement: Given a SQL query, find the order in which to join the

relations.

• Goal: Minimize query time or memory usage.

• Cost functions – minimize:

• Cout: Sum of the intermediate sizes ≈ “I want fast queries”.

• Cmax: Maximum intermediate size ≈ “Please avoid disk spilling”.

• Research question since ∼50 years: How fast can we get?

2

Join Ordering

Problem Statement

• Fundamental problem in query optimization.

• Statement: Given a SQL query, find the order in which to join the

relations.

• Goal: Minimize query time or memory usage.

• Cost functions – minimize:

• Cout: Sum of the intermediate sizes ≈ “I want fast queries”.

• Cmax: Maximum intermediate size ≈ “Please avoid disk spilling”.

• Research question since ∼50 years: How fast can we get?

2

Join Ordering: Notation

SELECT *

FROM R1, R2, R3, R4

WHERE R1.a = R2.b

AND R2.c = R3.d

AND R3.e = R4.f

R1 R2

R3R4

’

’

R1 R2

’

R3 R4

Query graph Join tree

3

Join Ordering: Dynamic Programming

Dynamic Programming

• Use Bellman’s optimality principle.

• Dynamic programming table DP[S]: The optimal cost to join the

relations in the set S .

⇒ Solution value: DP[{1, . . . , n}].
• Optimize DP[S] as

DP[S] = c(S) + min
T⊆S

(DP[T] +DP[S \ T]).1

Running Time Analysis

∑
S⊆[n]

2|S| =
n∑

k=0

(
n

k

)
2k = (1 + 2)n = 3n.

1For Cmax, replace both + by max.

4

Join Ordering: Dynamic Programming

Dynamic Programming

• Use Bellman’s optimality principle.

• Dynamic programming table DP[S]: The optimal cost to join the

relations in the set S .

⇒ Solution value: DP[{1, . . . , n}].
• Optimize DP[S] as

DP[S] = c(S) + min
T⊆S

(DP[T] +DP[S \ T]).1

Running Time Analysis

∑
S⊆[n]

2|S| =
n∑

k=0

(
n

k

)
2k = (1 + 2)n = 3n.

1For Cmax, replace both + by max.

4

Join Ordering: Dynamic Programming

Dynamic Programming

• Use Bellman’s optimality principle.

• Dynamic programming table DP[S]: The optimal cost to join the

relations in the set S .

⇒ Solution value: DP[{1, . . . , n}].
• Optimize DP[S] as

DP[S] = c(S) + min
T⊆S

(DP[T] +DP[S \ T]).1

Running Time Analysis

∑
S⊆[n]

2|S| =
n∑

k=0

(
n

k

)
2k = (1 + 2)n = 3n.

1For Cmax, replace both + by max.

4

Join Ordering: Status Quo

Exact Algorithms

• Selinger et al. (1979): DPsizeLinear2 → Θ(2nn).

• Vance and Maier (1996): DPsub → Θ(3n).

• Moerkotte and Neumann (2006): DPccp → Θ(#ccp).

• Haffner and Dietrich (2023): A∗ → O(#ccp).

Approximation Algorithms

• Many good heuristics, yet no theoretical guarantees.

• For a good reason: it’s hard [1]:

• NP-hard to approximate the optimal cost K within 2Θ(logδ−1 K) for

any δ > 0.

2Left-deep only.

5

Join Ordering: Status Quo

Exact Algorithms

• Selinger et al. (1979): DPsizeLinear2 → Θ(2nn).

• Vance and Maier (1996): DPsub → Θ(3n).

• Moerkotte and Neumann (2006): DPccp → Θ(#ccp).

• Haffner and Dietrich (2023): A∗ → O(#ccp).

Approximation Algorithms

• Many good heuristics, yet no theoretical guarantees.

• For a good reason: it’s hard [1]:

• NP-hard to approximate the optimal cost K within 2Θ(logδ−1 K) for

any δ > 0.

2Left-deep only.

5

Join Ordering: Status Quo

Exact Algorithms

• Selinger et al. (1979): DPsizeLinear2 → Θ(2nn).

• Vance and Maier (1996): DPsub → Θ(3n).

• Moerkotte and Neumann (2006): DPccp → Θ(#ccp).

• Haffner and Dietrich (2023): A∗ → O(#ccp).

Approximation Algorithms

• Many good heuristics, yet no theoretical guarantees.

• For a good reason: it’s hard [1]:

• NP-hard to approximate the optimal cost K within 2Θ(logδ−1 K) for

any δ > 0.

2Left-deep only.

5

Join Ordering: Status Quo

Exact Algorithms

• Selinger et al. (1979): DPsizeLinear2 → Θ(2nn).

• Vance and Maier (1996): DPsub → Θ(3n).

• Moerkotte and Neumann (2006): DPccp → Θ(#ccp).

• Haffner and Dietrich (2023): A∗ → O(#ccp).

Approximation Algorithms

• Many good heuristics, yet no theoretical guarantees.

• For a good reason: it’s hard [1]:

• NP-hard to approximate the optimal cost K within 2Θ(logδ−1 K) for

any δ > 0.

2Left-deep only.

5

Join Ordering: Status Quo

Exact Algorithms

• Selinger et al. (1979): DPsizeLinear2 → Θ(2nn).

• Vance and Maier (1996): DPsub → Θ(3n).

• Moerkotte and Neumann (2006): DPccp → Θ(#ccp).

• Haffner and Dietrich (2023): A∗ → O(#ccp).

Approximation Algorithms

• Many good heuristics, yet no theoretical guarantees.

• For a good reason: it’s hard [1]:

• NP-hard to approximate the optimal cost K within 2Θ(logδ−1 K) for

any δ > 0.

2Left-deep only.

5

Join Ordering: Status Quo

Exact Algorithms

• Selinger et al. (1979): DPsizeLinear2 → Θ(2nn).

• Vance and Maier (1996): DPsub → Θ(3n).

• Moerkotte and Neumann (2006): DPccp → Θ(#ccp).

• Haffner and Dietrich (2023): A∗ → O(#ccp).

Approximation Algorithms

• Many good heuristics, yet no theoretical guarantees.

• For a good reason: it’s hard [1]:

• NP-hard to approximate the optimal cost K within 2Θ(logδ−1 K) for

any δ > 0.

2Left-deep only.

5

Our Results

TL;DR

Join Ordering DP = Subset Convolution

6

Our Results: Formally

Let W be the largest join cardinality. Then,

• Cout: Can be solved in O∗(2nW) time.3

• Cout: Can be (1 + ε)-approximated in O∗(2n logW /ε) time.

• Cmax: Can be solved in O(2nn3) time (does not depend on W).

Implications

• Cmax: Super-polynomial speedup.

• Cout: First (1 + ε)-approximation algorithm.

• Beyond databases: einsum optimization.

• Used in quantum circuit simulation.

• Speedup over the state-of-the-art algorithm in opt einsum.

3O∗ hides polynomial factors in n.

7

Our Results: Formally

Let W be the largest join cardinality. Then,

• Cout: Can be solved in O∗(2nW) time.3

• Cout: Can be (1 + ε)-approximated in O∗(2n logW /ε) time.

• Cmax: Can be solved in O(2nn3) time (does not depend on W).

Implications

• Cmax: Super-polynomial speedup.

• Cout: First (1 + ε)-approximation algorithm.

• Beyond databases: einsum optimization.

• Used in quantum circuit simulation.

• Speedup over the state-of-the-art algorithm in opt einsum.

3O∗ hides polynomial factors in n.

7

Our Results: Formally

Let W be the largest join cardinality. Then,

• Cout: Can be solved in O∗(2nW) time.3

• Cout: Can be (1 + ε)-approximated in O∗(2n logW /ε) time.

• Cmax: Can be solved in O(2nn3) time (does not depend on W).

Implications

• Cmax: Super-polynomial speedup.

• Cout: First (1 + ε)-approximation algorithm.

• Beyond databases: einsum optimization.

• Used in quantum circuit simulation.

• Speedup over the state-of-the-art algorithm in opt einsum.

3O∗ hides polynomial factors in n.

7

Our Results: Formally

Let W be the largest join cardinality. Then,

• Cout: Can be solved in O∗(2nW) time.3

• Cout: Can be (1 + ε)-approximated in O∗(2n logW /ε) time.

• Cmax: Can be solved in O(2nn3) time (does not depend on W).

Implications

• Cmax: Super-polynomial speedup.

• Cout: First (1 + ε)-approximation algorithm.

• Beyond databases: einsum optimization.

• Used in quantum circuit simulation.

• Speedup over the state-of-the-art algorithm in opt einsum.

3O∗ hides polynomial factors in n.

7

Our Results: Formally

Let W be the largest join cardinality. Then,

• Cout: Can be solved in O∗(2nW) time.3

• Cout: Can be (1 + ε)-approximated in O∗(2n logW /ε) time.

• Cmax: Can be solved in O(2nn3) time (does not depend on W).

Implications

• Cmax: Super-polynomial speedup.

• Cout: First (1 + ε)-approximation algorithm.

• Beyond databases: einsum optimization.

• Used in quantum circuit simulation.

• Speedup over the state-of-the-art algorithm in opt einsum.

3O∗ hides polynomial factors in n.

7

Our Results: Formally

Let W be the largest join cardinality. Then,

• Cout: Can be solved in O∗(2nW) time.3

• Cout: Can be (1 + ε)-approximated in O∗(2n logW /ε) time.

• Cmax: Can be solved in O(2nn3) time (does not depend on W).

Implications

• Cmax: Super-polynomial speedup.

• Cout: First (1 + ε)-approximation algorithm.

• Beyond databases: einsum optimization.

• Used in quantum circuit simulation.

• Speedup over the state-of-the-art algorithm in opt einsum.

3O∗ hides polynomial factors in n.

7

Our Results: Formally

Let W be the largest join cardinality. Then,

• Cout: Can be solved in O∗(2nW) time.3

• Cout: Can be (1 + ε)-approximated in O∗(2n logW /ε) time.

• Cmax: Can be solved in O(2nn3) time (does not depend on W).

Implications

• Cmax: Super-polynomial speedup.

• Cout: First (1 + ε)-approximation algorithm.

• Beyond databases: einsum optimization.

• Used in quantum circuit simulation.

• Speedup over the state-of-the-art algorithm in opt einsum.

3O∗ hides polynomial factors in n.

7

Our Results: Formally

Let W be the largest join cardinality. Then,

• Cout: Can be solved in O∗(2nW) time.3

• Cout: Can be (1 + ε)-approximated in O∗(2n logW /ε) time.

• Cmax: Can be solved in O(2nn3) time (does not depend on W).

Implications

• Cmax: Super-polynomial speedup.

• Cout: First (1 + ε)-approximation algorithm.

• Beyond databases: einsum optimization.

• Used in quantum circuit simulation.

• Speedup over the state-of-the-art algorithm in opt einsum.

3O∗ hides polynomial factors in n.

7

Overview: Part I

General Framework

• Join ordering DP:

DP[S] = c(S)⊗ min
T⊆S

(DP[T]⊗DP[S \ T]).

• Subset convolution in the (min,⊗) semi-ring:

(f ⋆ g)(S) = min
T⊆S

(f (T)⊗ g(S \ T)).

• In other words:

DP[S] = c(S)⊗ (DP ⋆DP)(S).

• Instantiations:

• Cout: (min,+).

• Cmax: (min,max).

8

Overview: Part I

General Framework

• Join ordering DP:

DP[S] = c(S)⊗ min
T⊆S

(DP[T]⊗DP[S \ T]).

• Subset convolution in the (min,⊗) semi-ring:

(f ⋆ g)(S) = min
T⊆S

(f (T)⊗ g(S \ T)).

• In other words:

DP[S] = c(S)⊗ (DP ⋆DP)(S).

• Instantiations:

• Cout: (min,+).

• Cmax: (min,max).

8

Overview: Part I

General Framework

• Join ordering DP:

DP[S] = c(S)⊗ min
T⊆S

(DP[T]⊗DP[S \ T]).

• Subset convolution in the (min,⊗) semi-ring:

(f ⋆ g)(S) = min
T⊆S

(f (T)⊗ g(S \ T)).

• In other words:

DP[S] = c(S)⊗ (DP ⋆DP)(S).

• Instantiations:

• Cout: (min,+).

• Cmax: (min,max).

8

Overview: Part I

General Framework

• Join ordering DP:

DP[S] = c(S)⊗ min
T⊆S

(DP[T]⊗DP[S \ T]).

• Subset convolution in the (min,⊗) semi-ring:

(f ⋆ g)(S) = min
T⊆S

(f (T)⊗ g(S \ T)).

• In other words:

DP[S] = c(S)⊗ (DP ⋆DP)(S).

• Instantiations:

• Cout: (min,+).

• Cmax: (min,max).

8

Overview: Part I

General Framework

• Join ordering DP:

DP[S] = c(S)⊗ min
T⊆S

(DP[T]⊗DP[S \ T]).

• Subset convolution in the (min,⊗) semi-ring:

(f ⋆ g)(S) = min
T⊆S

(f (T)⊗ g(S \ T)).

• In other words:

DP[S] = c(S)⊗ (DP ⋆DP)(S).

• Instantiations:

• Cout: (min,+).

• Cmax: (min,max).

8

Overview: Part I

General Framework

• Join ordering DP:

DP[S] = c(S)⊗ min
T⊆S

(DP[T]⊗DP[S \ T]).

• Subset convolution in the (min,⊗) semi-ring:

(f ⋆ g)(S) = min
T⊆S

(f (T)⊗ g(S \ T)).

• In other words:

DP[S] = c(S)⊗ (DP ⋆DP)(S).

• Instantiations:

• Cout: (min,+).

• Cmax: (min,max).

8

Overview: Part II

9

Overview: Part II

Fast Subset Convolution

• Evaluating convolutions in semi-rings is hard – O(3n).

• Convolution in the (+,×) ring is much faster – O(2nn2):

(f ∗ g)(S) =
∑
T⊆S

f (T) · g(S \ T).

• Good news: We can map a semi-ring into a ring via polynomials.

• Represent a value v as xv .
• Intuition:

• “+” becomes product: xa+b = xaxb.

• “min” is just taking the lowest monomial.

• Bad news: Running time becomes pseudopolynomial: O∗(2nW),

where W is the largest value in f and g .

Where to go?

10

Overview: Part II

Fast Subset Convolution

• Evaluating convolutions in semi-rings is hard – O(3n).

• Convolution in the (+,×) ring is much faster – O(2nn2):

(f ∗ g)(S) =
∑
T⊆S

f (T) · g(S \ T).

• Good news: We can map a semi-ring into a ring via polynomials.

• Represent a value v as xv .
• Intuition:

• “+” becomes product: xa+b = xaxb.

• “min” is just taking the lowest monomial.

• Bad news: Running time becomes pseudopolynomial: O∗(2nW),

where W is the largest value in f and g .

Where to go?

10

Overview: Part II

Fast Subset Convolution

• Evaluating convolutions in semi-rings is hard – O(3n).

• Convolution in the (+,×) ring is much faster – O(2nn2):

(f ∗ g)(S) =
∑
T⊆S

f (T) · g(S \ T).

• Good news: We can map a semi-ring into a ring via polynomials.

• Represent a value v as xv .
• Intuition:

• “+” becomes product: xa+b = xaxb.

• “min” is just taking the lowest monomial.

• Bad news: Running time becomes pseudopolynomial: O∗(2nW),

where W is the largest value in f and g .

Where to go?

10

Overview: Part II

Fast Subset Convolution

• Evaluating convolutions in semi-rings is hard – O(3n).

• Convolution in the (+,×) ring is much faster – O(2nn2):

(f ∗ g)(S) =
∑
T⊆S

f (T) · g(S \ T).

• Good news: We can map a semi-ring into a ring via polynomials.

• Represent a value v as xv .
• Intuition:

• “+” becomes product: xa+b = xaxb.

• “min” is just taking the lowest monomial.

• Bad news: Running time becomes pseudopolynomial: O∗(2nW),

where W is the largest value in f and g .

Where to go?

10

Overview: Part II

Fast Subset Convolution

• Evaluating convolutions in semi-rings is hard – O(3n).

• Convolution in the (+,×) ring is much faster – O(2nn2):

(f ∗ g)(S) =
∑
T⊆S

f (T) · g(S \ T).

• Good news: We can map a semi-ring into a ring via polynomials.

• Represent a value v as xv .
• Intuition:

• “+” becomes product: xa+b = xaxb.

• “min” is just taking the lowest monomial.

• Bad news: Running time becomes pseudopolynomial: O∗(2nW),

where W is the largest value in f and g .

Where to go?

10

Overview: Part III

DPconv: Takeaway

• No pseudopolynomial factor when we optimize for Cmax.

• No pseudopolynomial factor when we move to (1 + ε)-approximation

→ Cout can be (1 + ε)-approximated in O∗(2n logW /ε).4

4Or in O∗(2
3n
2 /

√
ε)-time, however this is not yet practical.

11

Overview: Part III

DPconv: Takeaway

• No pseudopolynomial factor when we optimize for Cmax.

• No pseudopolynomial factor when we move to (1 + ε)-approximation

→ Cout can be (1 + ε)-approximated in O∗(2n logW /ε).4

4Or in O∗(2
3n
2 /

√
ε)-time, however this is not yet practical.

11

Fast Convolutions: Intuition

f

g

🪄

🪄

f’

g’

🐈 🪄

-1

f 🐆 g🐆

12

Fast Subset Convolution

• Same principle: Transform the functions by a magic box.

• Our magic box – zeta transform:

ζf (S) =
∑
T⊆S

f (T),

for a subset S ⊆ [n].

• Naive evaluation: O(3n).

• Clever evaluation: O(2nn).

13

Fast Subset Convolution

• Same principle: Transform the functions by a magic box.

• Our magic box – zeta transform:

ζf (S) =
∑
T⊆S

f (T),

for a subset S ⊆ [n].

• Naive evaluation: O(3n).

• Clever evaluation: O(2nn).

13

Fast Subset Convolution

• Same principle: Transform the functions by a magic box.

• Our magic box – zeta transform:

ζf (S) =
∑
T⊆S

f (T),

for a subset S ⊆ [n].

• Naive evaluation: O(3n).

• Clever evaluation: O(2nn).

13

Zeta Transform: Hands-On

• You have 1 minute to fill up:

5

{1,2,3}

3

{1,2}
4

{1,3}
2

{2,3}

7

{1}
6

{2}
9

{3}

0

H

{1,2,3}

{1,2} {1,3} {2,3}

{1} {2} {3}

H

ζ

Figure 1: How to compute the zeta transform of a set function.

14

Zeta Transform: Hands-On

5

{1,2,3}

3

{1,2}
4

{1,3}
2

{2,3}

7

{1}
6

{2}
9

{3}

0

H

36

{1,2,3}

16

{1,2}
20

{1,3}
17

{2,3}

7

{1}
6

{2}
9

{3}

0

H

ζ

Figure 2: How to compute the zeta transform of a set function.

15

Fast Zeta Transform: Pseudocode

zeta(f):

for d in range(n):

for S in range (2**n):

if S & 2**d:

f[S] += f[S ^ 2**d]

5

{1,2,3}

3

{1,2}
4

{1,3}
2

{2,3}

7

{1}
6

{2}
9

{3}

0

H

16

Inverse Zeta Transform

• ”Wait, you also need the inverted magic box, right?”

• The inverse of the zeta transform:

µf (S) =
∑
T⊆S

(−1)|S\T |f (T).

• In other words: f = µζf = ζµf .

17

Inverse Zeta Transform

• ”Wait, you also need the inverted magic box, right?”

• The inverse of the zeta transform:

µf (S) =
∑
T⊆S

(−1)|S\T |f (T).

• In other words: f = µζf = ζµf .

17

Inverse Zeta Transform

• ”Wait, you also need the inverted magic box, right?”

• The inverse of the zeta transform:

µf (S) =
∑
T⊆S

(−1)|S\T |f (T).

• In other words: f = µζf = ζµf .

17

Inverse Zeta Transform: Example

5

{1,2,3}

3

{1,2}
4

{1,3}
2

{2,3}

7

{1}
6

{2}
9

{3}

0

H

36

{1,2,3}

16

{1,2}
20

{1,3}
17

{2,3}

7

{1}
6

{2}
9

{3}

0

H

ζ

µ

Figure 3: Inverting the zeta transform.

18

Fast Subset Convolution

First attempt

1. Magic box: ζf , ζg .

2. Compute ζf · ζg .
3. Inverted magic box: µ(ζf · ζg).

19

Fast Subset Convolution

First attempt

1. Magic box: ζf , ζg .

2. Compute ζf · ζg .

3. Inverted magic box: µ(ζf · ζg).

19

Fast Subset Convolution

First attempt

1. Magic box: ζf , ζg .

2. Compute ζf · ζg .
3. Inverted magic box: µ(ζf · ζg).

19

Fast Subset Convolution

First attempt

1. Magic box: ζf , ζg .

2. Compute ζf · ζg .
3. Inverted magic box: µ(ζf · ζg).

Unfortunately, this only computes∑
U,V ⊆ S
U ∪ V = S

f (U)g(V).

19

Fast Subset Convolution

First attempt

1. Magic box: ζf , ζg .

2. Compute ζf · ζg .
3. Inverted magic box: µ(ζf · ζg).

Unfortunately, this only computes∑
U,V ⊆ S
U ∪ V = S

f (U)g(V).

How can we fix it?

19

Optimizing Cmax

• Ad-hoc dynamic programming:

DP[S] = max

{
c(S), min

T⊂S
max {DP[T],DP[S \ T]}

}
.

• Note: The DP does not create any new values!

→ We can binary search the optimal value DP[{1, . . . , n}].
• Fix a join cardinality γ and define a new cardinality function:

c ′(S) = if c(S) ≤ γ then 1 else 0.

• Now just run the (+,×) dynamic programming with c ′:

DP[S] = c ′(S) +
∑
T⊂S

DP[T] ·DP[S \ T].

• If DP[{1, . . . , n}] > 0, then γ is feasible.

20

Optimizing Cmax

• Ad-hoc dynamic programming:

DP[S] = max

{
c(S), min

T⊂S
max {DP[T],DP[S \ T]}

}
.

• Note: The DP does not create any new values!

→ We can binary search the optimal value DP[{1, . . . , n}].

• Fix a join cardinality γ and define a new cardinality function:

c ′(S) = if c(S) ≤ γ then 1 else 0.

• Now just run the (+,×) dynamic programming with c ′:

DP[S] = c ′(S) +
∑
T⊂S

DP[T] ·DP[S \ T].

• If DP[{1, . . . , n}] > 0, then γ is feasible.

20

Optimizing Cmax

• Ad-hoc dynamic programming:

DP[S] = max

{
c(S), min

T⊂S
max {DP[T],DP[S \ T]}

}
.

• Note: The DP does not create any new values!

→ We can binary search the optimal value DP[{1, . . . , n}].
• Fix a join cardinality γ and define a new cardinality function:

c ′(S) = if c(S) ≤ γ then 1 else 0.

• Now just run the (+,×) dynamic programming with c ′:

DP[S] = c ′(S) +
∑
T⊂S

DP[T] ·DP[S \ T].

• If DP[{1, . . . , n}] > 0, then γ is feasible.

20

Optimizing Cmax

• Ad-hoc dynamic programming:

DP[S] = max

{
c(S), min

T⊂S
max {DP[T],DP[S \ T]}

}
.

• Note: The DP does not create any new values!

→ We can binary search the optimal value DP[{1, . . . , n}].
• Fix a join cardinality γ and define a new cardinality function:

c ′(S) = if c(S) ≤ γ then 1 else 0.

• Now just run the (+,×) dynamic programming with c ′:

DP[S] = c ′(S) +
∑
T⊂S

DP[T] ·DP[S \ T].

• If DP[{1, . . . , n}] > 0, then γ is feasible.

20

Optimizing Cmax

• Ad-hoc dynamic programming:

DP[S] = max

{
c(S), min

T⊂S
max {DP[T],DP[S \ T]}

}
.

• Note: The DP does not create any new values!

→ We can binary search the optimal value DP[{1, . . . , n}].
• Fix a join cardinality γ and define a new cardinality function:

c ′(S) = if c(S) ≤ γ then 1 else 0.

• Now just run the (+,×) dynamic programming with c ′:

DP[S] = c ′(S) +
∑
T⊂S

DP[T] ·DP[S \ T].

• If DP[{1, . . . , n}] > 0, then γ is feasible.

20

Optimizing Cmax

ą γ ď γ

DP w/ FSC

γγ

DPrV s “ 0DPrV s ą 0

B
I

N

A

R
Y S

E

A

R

C
H

Figure 4: How DPconv optimizes Cmax.

21

Optimizing Cmax: Example

1K

{1,2,3}

2M

{1,2}
3M

{1,3}
3M

{2,3}

50M

{1}
40M

{2}
80M

{3}

0M

H

{1,2,3}

{1,2} {1,3} {2,3}

{1} {2} {3}

H

γ “ 1M

Figure 5: The cardinalities > γ are ignored.

22

Optimizing Cout

• Ad-hoc DP: O(3n).

• Cout is working in the (min,+) semi-ring.

→ Using the FSC framework, we obtain a O∗(2nW)-time algorithm.

• However, this is not so practical in the context of join ordering.

→ Join cardinalities can be very large.

• Two open questions in algorithm design research:

• Is O(3n) the best we can do for (min,+) subset convolution?

• Is the pseudopolynomial O(W) factor actually needed?

23

Optimizing Cout

• Ad-hoc DP: O(3n).

• Cout is working in the (min,+) semi-ring.

→ Using the FSC framework, we obtain a O∗(2nW)-time algorithm.

• However, this is not so practical in the context of join ordering.

→ Join cardinalities can be very large.

• Two open questions in algorithm design research:

• Is O(3n) the best we can do for (min,+) subset convolution?

• Is the pseudopolynomial O(W) factor actually needed?

23

Optimizing Cout

• Ad-hoc DP: O(3n).

• Cout is working in the (min,+) semi-ring.

→ Using the FSC framework, we obtain a O∗(2nW)-time algorithm.

• However, this is not so practical in the context of join ordering.

→ Join cardinalities can be very large.

• Two open questions in algorithm design research:

• Is O(3n) the best we can do for (min,+) subset convolution?

• Is the pseudopolynomial O(W) factor actually needed?

23

Optimizing Cout

• Ad-hoc DP: O(3n).

• Cout is working in the (min,+) semi-ring.

→ Using the FSC framework, we obtain a O∗(2nW)-time algorithm.

• However, this is not so practical in the context of join ordering.

→ Join cardinalities can be very large.

• Two open questions in algorithm design research:

• Is O(3n) the best we can do for (min,+) subset convolution?

• Is the pseudopolynomial O(W) factor actually needed?

23

Optimizing Cout

• Ad-hoc DP: O(3n).

• Cout is working in the (min,+) semi-ring.

→ Using the FSC framework, we obtain a O∗(2nW)-time algorithm.

• However, this is not so practical in the context of join ordering.

→ Join cardinalities can be very large.

• Two open questions in algorithm design research:

• Is O(3n) the best we can do for (min,+) subset convolution?

• Is the pseudopolynomial O(W) factor actually needed?

23

Joint Optimization: Ccap = Cmax + Cout

Motivation Ccap

• Optimizing for Cmax alone may lead to slow plans.

→ Also enforce that we have an optimal Cout plan.

• First run DPccp with Cmax, then Cout with a threshold.

• However, this is slower:

24

Joint Optimization: Ccap = Cmax + Cout

Motivation Ccap

• Optimizing for Cmax alone may lead to slow plans.

→ Also enforce that we have an optimal Cout plan.

• First run DPccp with Cmax, then Cout with a threshold.

• However, this is slower:

24

Joint Optimization: Ccap = Cmax + Cout

Motivation Ccap

• Optimizing for Cmax alone may lead to slow plans.

→ Also enforce that we have an optimal Cout plan.

• First run DPccp with Cmax, then Cout with a threshold.

• However, this is slower:

12 14 17

Number of relations (n)

0

10

20

30

O
p

ti
m

iz
at

io
n

ti
m

e
[m

s] JOB

DPccp: Cout

DPccp: Ccap

12 14 16

Number of relations (n)

0.00

0.01

0.02

0.03

CEB

Figure 6: Initial overhead in optimizing Ccap on JOB

24

Joint Optimization: Ccap = Cmax + Cout

(Very) Simple Solution

• Replace DPccp in Cmax optimization by DPconv.

25

Approximating Cout?

Recall: Cout takes O
∗(2nW)-time with our framework.

How to dissolve the pseudopolynomial factor?

• We will approximate the optimal value of Cout within 1 + ε.

• Example: The optimal plan has Cout = 400K and ε = 1%.

→ Then we obtain a plan of cost ≤ 404K .

• Running time: O∗(2n logW /ε).

26

Approximating Cout?

Recall: Cout takes O
∗(2nW)-time with our framework.

How to dissolve the pseudopolynomial factor?

• We will approximate the optimal value of Cout within 1 + ε.

• Example: The optimal plan has Cout = 400K and ε = 1%.

→ Then we obtain a plan of cost ≤ 404K .

• Running time: O∗(2n logW /ε).

26

Approximating Cout?

Recall: Cout takes O
∗(2nW)-time with our framework.

How to dissolve the pseudopolynomial factor?

• We will approximate the optimal value of Cout within 1 + ε.

• Example: The optimal plan has Cout = 400K and ε = 1%.

→ Then we obtain a plan of cost ≤ 404K .

• Running time: O∗(2n logW /ε).

26

Approximating Cout?

Recall: Cout takes O
∗(2nW)-time with our framework.

How to dissolve the pseudopolynomial factor?

• We will approximate the optimal value of Cout within 1 + ε.

• Example: The optimal plan has Cout = 400K and ε = 1%.

→ Then we obtain a plan of cost ≤ 404K .

• Running time: O∗(2n logW /ε).

26

Approximate (min,+) Subset Convolution

Definition

Given two set functions f , g , approximate their (min,+) subset

convolution:

(f ⋆ g)(S) ≤ h̃(S) ≤ (1 + ε)(f ⋆ g)(S)

for all S ⊆ [n], with ε > 0.

How to employ it

• Fix a relative error δ > 0.

• Hence, the total error is (1 + δ)n−1.

• To obtain (1 + ε)-approximation, simply set δ := Θ(ε/(n − 1)).

27

Approximate (min,+) Subset Convolution

Definition

Given two set functions f , g , approximate their (min,+) subset

convolution:

(f ⋆ g)(S) ≤ h̃(S) ≤ (1 + ε)(f ⋆ g)(S)

for all S ⊆ [n], with ε > 0.

How to employ it

• Fix a relative error δ > 0.

• Hence, the total error is (1 + δ)n−1.

• To obtain (1 + ε)-approximation, simply set δ := Θ(ε/(n − 1)).

27

Approximate (min,+) Subset Convolution

Definition

Given two set functions f , g , approximate their (min,+) subset

convolution:

(f ⋆ g)(S) ≤ h̃(S) ≤ (1 + ε)(f ⋆ g)(S)

for all S ⊆ [n], with ε > 0.

How to employ it

• Fix a relative error δ > 0.

• Hence, the total error is (1 + δ)n−1.

• To obtain (1 + ε)-approximation, simply set δ := Θ(ε/(n − 1)).

27

Approximate (min,+) Subset Convolution

Definition

Given two set functions f , g , approximate their (min,+) subset

convolution:

(f ⋆ g)(S) ≤ h̃(S) ≤ (1 + ε)(f ⋆ g)(S)

for all S ⊆ [n], with ε > 0.

How to employ it

• Fix a relative error δ > 0.

• Hence, the total error is (1 + δ)n−1.

• To obtain (1 + ε)-approximation, simply set δ := Θ(ε/(n − 1)).

27

Evaluation

Benchmarks

• Clique queries with cardinalities c(S) s.t. c(S) ≤ c(S1) · c(S1).

• When comparing to the A∗-based optimizer (SIGMOD’23), we take

their original clique queries since their algorithm performance is

sensitive to the cardinalities.

Competitors

• DPsub[max, out]: Θ(3n) – independent of the query shape.

• DPccp = DPsub on clique queries.

• A∗[out]: O(#ccp) – adapts to the cardinalities.

• DPconv[max]: Θ(2nn3) – independent of the query shape.

28

Evaluation

Benchmarks

• Clique queries with cardinalities c(S) s.t. c(S) ≤ c(S1) · c(S1).
• When comparing to the A∗-based optimizer (SIGMOD’23), we take

their original clique queries since their algorithm performance is

sensitive to the cardinalities.

Competitors

• DPsub[max, out]: Θ(3n) – independent of the query shape.

• DPccp = DPsub on clique queries.

• A∗[out]: O(#ccp) – adapts to the cardinalities.

• DPconv[max]: Θ(2nn3) – independent of the query shape.

28

Evaluation

Benchmarks

• Clique queries with cardinalities c(S) s.t. c(S) ≤ c(S1) · c(S1).
• When comparing to the A∗-based optimizer (SIGMOD’23), we take

their original clique queries since their algorithm performance is

sensitive to the cardinalities.

Competitors

• DPsub[max, out]: Θ(3n) – independent of the query shape.

• DPccp = DPsub on clique queries.

• A∗[out]: O(#ccp) – adapts to the cardinalities.

• DPconv[max]: Θ(2nn3) – independent of the query shape.

28

Evaluation

Benchmarks

• Clique queries with cardinalities c(S) s.t. c(S) ≤ c(S1) · c(S1).
• When comparing to the A∗-based optimizer (SIGMOD’23), we take

their original clique queries since their algorithm performance is

sensitive to the cardinalities.

Competitors

• DPsub[max, out]: Θ(3n) – independent of the query shape.

• DPccp = DPsub on clique queries.

• A∗[out]: O(#ccp) – adapts to the cardinalities.

• DPconv[max]: Θ(2nn3) – independent of the query shape.

28

Evaluation

Benchmarks

• Clique queries with cardinalities c(S) s.t. c(S) ≤ c(S1) · c(S1).
• When comparing to the A∗-based optimizer (SIGMOD’23), we take

their original clique queries since their algorithm performance is

sensitive to the cardinalities.

Competitors

• DPsub[max, out]: Θ(3n) – independent of the query shape.

• DPccp = DPsub on clique queries.

• A∗[out]: O(#ccp) – adapts to the cardinalities.

• DPconv[max]: Θ(2nn3) – independent of the query shape.

28

Evaluation: Cmax

5 10 15 20 25

Number of relations (n)

0

200

400

600

800

O
p

ti
m

iz
a
ti

o
n

ti
m

e
[s

]
Optimizing clique queries with Cmax

DPsub[max]: O(3n)

DPconv[max]: O(2nn3)

Figure 7: Optimizing for Cmax on clique queries

29

Evaluation: Ccap = Cmax + Cout

4 6 8 10 12 14 16 18

Number of relations (n)

0

5

10

15

O
p

ti
m

iz
at

io
n

ti
m

e
[s

]
Optimizing clique queries: DPconv vs. A* [18]

A∗↑ + hzero: Optimizes Cout

DPconv[max] + DPsub[out]: Optimizes Ccap

DPconv[max]: Optimizes Cmax

Figure 8: Optimizing for Cout and Ccap on clique queries

30

Evaluation: Ccap = Cmax + Cout

15 16 17 18 19 20 21 22 23 24

Number of relations (n)

0.5

1.0

2.0

3.0

4.0

5.0

6.0

7.0

S
lo

w
d

ow
n

ov
er

va
n

il
la
C

ou
t

Optimizing clique queries with Ccap

DPsub[max] + DPsub[out]

DPconv[max] + DPsub[out]

Figure 9: Optimizing for Ccap on clique queries

31

Open Problems

• Currently, DPconv is agnostic to the query shape.

• For Cmax, it always runs in O(2nn3)-time.

• We would need a sparse subset convolution.

• Sparse = Few connected subgraphs.

• Polynomial-space join ordering.

• All exact join order optimizers take exponential space.

• Example: Steiner tree can be solved in polynomial space.

• Jointly optimize the memory of concurrent queries using Cmax.

• AutoWLM [2] can predict query’s memory requirements.

32

Open Problems

• Currently, DPconv is agnostic to the query shape.

• For Cmax, it always runs in O(2nn3)-time.

• We would need a sparse subset convolution.

• Sparse = Few connected subgraphs.

• Polynomial-space join ordering.

• All exact join order optimizers take exponential space.

• Example: Steiner tree can be solved in polynomial space.

• Jointly optimize the memory of concurrent queries using Cmax.

• AutoWLM [2] can predict query’s memory requirements.

32

Open Problems

• Currently, DPconv is agnostic to the query shape.

• For Cmax, it always runs in O(2nn3)-time.

• We would need a sparse subset convolution.

• Sparse = Few connected subgraphs.

• Polynomial-space join ordering.

• All exact join order optimizers take exponential space.

• Example: Steiner tree can be solved in polynomial space.

• Jointly optimize the memory of concurrent queries using Cmax.

• AutoWLM [2] can predict query’s memory requirements.

32

Outlook

• This summer: Internship @GSL in Barcelona with Tiemo Bang.

33

S. Chatterji, S. S. K. Evani, S. Ganguly, and M. D. Yemmanuru.

On the Complexity of Approximate Query Optimization.

In L. Popa, S. Abiteboul, and P. G. Kolaitis, editors, Proceedings of

the Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium on

Principles of Database Systems, June 3-5, Madison, Wisconsin,

USA, pages 282–292. ACM, 2002.

G. Saxena, M. Rahman, N. Chainani, C. Lin, G. Caragea,

F. Chowdhury, R. Marcus, T. Kraska, I. Pandis, and B. M.

Narayanaswamy.

Auto-WLM: Machine Learning Enhanced Workload

Management in Amazon Redshift.

In S. Das, I. Pandis, K. S. Candan, and S. Amer-Yahia, editors,

Companion of the 2023 International Conference on Management of

Data, SIGMOD/PODS 2023, Seattle, WA, USA, June 18-23, 2023,

pages 225–237. ACM, 2023.

Evaluation: Costs

• CEB benchmark (13,644 queries).

• 2,873 queries:

• Cout has 6.8% larger Cmax.

• Cmax looses 22.8% in Cout.

• Ccap looses only 9.5% in Cout while maintaining optimal Cmax.

	Appendix

