
🌰 Instance-Optimized
String Fingerprints
Mihail Stoian*, Johannes Thürauf*, Andreas Zimmerer,
Alexander van Renen, Andreas Kipf

Data Systems Lab x Discrete Optimization Lab @UTN

@AIDB’25, September 1st, 2025

Data Pruning

2

min:
max:

min:
max:

salary

100K
200K

200K
300K

Barcelona
Paris

location

Madrid
Redmond

Data Pruning

3

min:
max:

min:
max:

salary location

❌ (skip)

🔍 (maybe)

WHERE salary = 250K

100K
200K

200K
300K

Barcelona
Paris

Madrid
Redmond

Data Pruning

4

min:
max:

min:
max:

salary location
WHERE location LIKE ‘B%’

100K
200K

200K
300K

Barcelona
Paris

Madrid
Redmond

❄

✅ (match)

❌ (skip)

Data Pruning

5

min:
max:

min:
max:

salary location
WHERE location LIKE ‘%ch%’

100K
200K

200K
300K

Barcelona
Paris

Madrid
Redmond

🔍 (maybe)

🔍 (maybe)

Data Pruning

6

min:
max:

min:
max:

salary location
WHERE location LIKE ‘%ch%’

100K
200K

200K
300K

Barcelona
Paris

Madrid
Redmond

🔍 (maybe)

🔍 (maybe)

String Fingerprints

7

1. Partition the alphabet in a fixed number of bins.
2. Compute a bitmask of bin indices.

String Fingerprints

8

1. Partition the alphabet in a fixed number of bins.
2. Compute a bitmask of bin indices.

String Fingerprints

9

1. Partition the alphabet in a fixed number of bins.
2. Compute a bitmask of bin indices.

String Fingerprints

10

1. Partition the alphabet in a fixed number of bins.
2. Compute a bitmask of bin indices.

Application

11

● Lightweight secondary index for LIKE predicates with false positives.

Application

12

● Lightweight secondary index for LIKE predicates with false positives.

language symbol spelling

󰏅 🍫 nutella

󰐬 🧈 unt

󰏃 🐟 thon

Application

13

● Lightweight secondary index for LIKE predicates with false positives.

language symbol spelling str_fp

󰏅 🍫 nutella 1010

󰐬 🧈 unt 1010

󰏃 🐟 thon 0111

Application

14

● Lightweight secondary index for LIKE predicates with false positives.

Example: WHERE spelling LIKE ‘%utn%’.

language symbol spelling str_fp

󰏅 🍫 nutella 1010

󰐬 🧈 unt 1010

󰏃 🐟 thon 0111

Application

15

● Lightweight secondary index for LIKE predicates with false positives.

Example: WHERE spelling LIKE ‘%utn%’ ⇒ 1010.

language symbol spelling str_fp

󰏅 🍫 nutella 1010

󰐬 🧈 unt 1010

󰏃 🐟 thon 0111

Application

16

● Lightweight secondary index for LIKE predicates with false positives.

Example: WHERE spelling LIKE ‘%utn%’ ⇒ 1010.

language symbol spelling str_fp

󰏅 🍫 nutella 1010

󰐬 🧈 unt 1010

󰏃 🐟 thon 0111 1010 ⊊ 0111

Application

17

● Lightweight secondary index for LIKE predicates with false positives.

Example: WHERE spelling LIKE ‘%utn%’ ⇒ 1010.

language symbol spelling str_fp

󰏅 🍫 nutella 1010

󰐬 🧈 unt 1010

󰏃 🐟 thon 0111 1010 ⊊ 0111

Optimal Partitioning

● Intuition: Minimize the number of wasted LIKE evaluations.
● Example: WHERE spelling LIKE ‘%utn%’ (1010) ⇒ 2 false positives.

18

language symbol spelling str_fp

󰏅 🍫 nutella 1010

󰐬 🧈 unt 1010

Optimal Partitioning

● Intuition: Minimize the number of wasted LIKE evaluations.
● Example: WHERE spelling LIKE ‘%utn%’ (1010) ⇒ 2 false positives.

⇒ Objective: Minimize the number of false positives.

19

language symbol spelling str_fp

󰏅 🍫 nutella 1010

󰐬 🧈 unt 1010

Mixed-Integer Program

● Words W: The string column.
● Queries Q: The patterns in the workload.
● Ground truth f(q): The words that match query q.

20

Mixed-Integer Program

● Words W: The string column.
● Queries Q: The patterns in the workload.
● Ground truth f(q): The words that match query q.
● Program:

1. Encode the partitioning: xa,i = 1, if letter a in bin i.

21

Mixed-Integer Program

● Words W: The string column.
● Queries Q: The patterns in the workload.
● Ground truth f(q): The words that match query q.
● Program:

1. Encode the partitioning: xa,i = 1, if letter a in bin i.
2. Encode the fingerprint: ds,i

 = 1, if string s has a letter in bin i.

22

Mixed-Integer Program

● Words W: The string column.
● Queries Q: The patterns in the workload.
● Ground truth f(q): The words that match query q.
● Program:

1. Encode the partitioning: xa,i = 1, if letter a in bin i.
2. Encode the fingerprint: ds,i

 = 1, if string s has a letter in bin i.
3. Encode a false positive: ηw,q= 1, if the partitioning correctly tells apart

whether query q is not contained in word w.

23

Mixed-Integer Program

● Words W: The string column.
● Queries Q: The patterns in the workload.
● Ground truth f(q): The words that match query q.
● Program:

1. Encode the partitioning: xa,i = 1, if letter a in bin i.
2. Encode the fingerprint: ds,i

 = 1, if string s has a letter in bin i.
3. Encode a false positive: ηw,q= 1, if the partitioning correctly tells apart

whether query q is not contained in word w.
● Objective: max Σq ∈ Q Σw ∈ W \ f(q) ηw,q.
● Constraints: Details in the paper.

24

Evaluation

● Setup: Column title.title in IMDb dataset (2.37M tuples; no UTF-8).
● Workload:

○ 300 queries ⇒ 10 high-, mid-, low-frequency {1, …, 10}-grams from the column.
○ Split into:

■ 20 “seen” queries & 280 “unseen” queries.

25

Evaluation

● Setup: Column title.title in IMDb dataset (2.37M tuples; no UTF-8).
● Workload:

○ 300 queries ⇒ 10 high-, mid-, low-frequency {1, …, 10}-grams from the column.
○ Split into:

■ 20 “seen” queries & 280 “unseen” queries.
● Data:

a. Full table.
b. The 1st data block (= 216 tuples).
c. 50-tuple sample from the 1st data block.

⇒ MIP is optimized on seen queries x 50-tuple sample.

26

Evaluation

● Setup: Column title.title in IMDb dataset (2.37M tuples; no UTF-8).
● Workload:

○ 300 queries ⇒ 10 high-, mid-, low-frequency {1, …, 10}-grams from the column.
○ Split into:

■ 20 “seen” queries & 280 “unseen” queries.
● Data:

a. Full table.
b. The 1st data block (= 216 tuples).
c. 50-tuple sample from the 1st data block.

⇒ MIP is optimized on seen queries x 50-tuple sample.

● Bit-widths ∈ {4, 8, 16}-bit.
27

Evaluation

● Setup: Column title.title in IMDb dataset (2.37M tuples; no UTF-8).
● Workload:

○ 300 queries ⇒ 10 high-, mid-, low-frequency {1, …, 10}-grams from the column.
○ Split into:

■ 20 “seen” queries & 280 “unseen” queries.
● Data:

a. Full table.
b. The 1st data block (= 216 tuples).
c. 50-tuple sample from the 1st data block.

⇒ MIP is optimized on seen queries x 50-tuple sample.

● Bit-widths ∈ {4, 8, 16}-bit.
● Baseline: Round-robin placement of letters into bins. 28

Evaluation: False Positive Rate

29

MIP Optimization

Evaluation: False Positive Rate

30

MIP Optimization

Evaluation: False Positive Rate

31

MIP Optimization Generalization

Evaluation: False Positive Rate

32

MIP Optimization Generalization

Evaluation: Normalized Query Latency

33

Generalization

● Note: Run on the full table.

Evaluation: Takeaways

● <20% false positive rate on the full table.
● 🪄 Generalization to unseen queries (unlike predicate caching).
● 🚀 Up to 1.36x speedup for seen queries & 1.26x speedup for unseen queries.

34

(Many) Future Work Directions

● Instead of 1-grams, i.e., letters ⇒ Why not 2-/3-grams?
○ Intuition: We can capture the order of the letters.

● String zonemaps:
○ String fingerprints enable pruning for infix predicates 😲.

● String cardinality estimation.
○ Take the supersets and sum up their corresponding cardinality.

● Table clustering:
○ Sort by the fingerprint.

35

Wanna More Cool Research?

36

See you tmrw in Research 8 (Westminster 4F), 1.45pm - 3.15pm!

“Parachute: Single-Pass Bi-Directional Information Passing”

🚀 1.54x speedup over duckdb

