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Optimal Partitioning

● Intuition: Minimize the number of wasted LIKE evaluations.
● Example: WHERE spelling LIKE ‘%utn%’ (1010) ⇒ 2 false positives.
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Optimal Partitioning

● Intuition: Minimize the number of wasted LIKE evaluations.
● Example: WHERE spelling LIKE ‘%utn%’ (1010) ⇒ 2 false positives.

⇒ Objective: Minimize the number of false positives.
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Mixed-Integer Program

● Words W: The string column.
● Queries Q: The patterns in the workload.
● Ground truth f(q): The words that match query q.
● Program:

1. Encode the partitioning: xa,i = 1, if letter a in bin i.
2. Encode the fingerprint: ds,i

 = 1, if string s has a letter in bin i.
3. Encode a false positive: ηw,q= 1, if the partitioning correctly tells apart 

whether query q is not contained in word w.
● Objective: max Σq ∈ Q Σw ∈ W \ f(q) ηw,q.
● Constraints: Details in the paper.
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Evaluation

● Setup: Column title.title in IMDb dataset (2.37M tuples; no UTF-8).
● Workload:

○ 300 queries ⇒ 10 high-, mid-, low-frequency {1, …, 10}-grams from the column.
○ Split into:

■ 20 “seen” queries & 280 “unseen” queries.
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■ 20 “seen” queries & 280 “unseen” queries.
● Data:
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b. The 1st  data block (= 216 tuples).
c. 50-tuple sample from the 1st data block.

⇒ MIP is optimized on seen queries x 50-tuple sample.

● Bit-widths ∈ {4, 8, 16}-bit.
● Baseline: Round-robin placement of letters into bins. 28



Evaluation: False Positive Rate
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Evaluation: Normalized Query Latency
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Generalization

● Note: Run on the full table.



Evaluation: Takeaways

● <20% false positive rate on the full table.
● 🪄 Generalization to unseen queries (unlike predicate caching). 
● 🚀 Up to 1.36x speedup for seen queries & 1.26x speedup for unseen queries.
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(Many) Future Work Directions

● Instead of 1-grams, i.e., letters ⇒ Why not 2-/3-grams?
○ Intuition: We can capture the order of the letters.

● String zonemaps:
○ String fingerprints enable pruning for infix predicates 😲.

● String cardinality estimation.
○ Take the supersets and sum up their corresponding cardinality.

● Table clustering:
○ Sort by the fingerprint.
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Wanna More Cool Research?
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See you tmrw in Research 8 (Westminster 4F), 1.45pm - 3.15pm!

“Parachute: Single-Pass Bi-Directional Information Passing”

🚀 1.54x speedup over duckdb


